Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Nat Rev Mol Cell Biol ; 15(3): 197-210, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24556841

RESUMO

In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ciclo Celular/genética , Processos de Crescimento Celular/genética , Mitose , Ploidias , Animais , Evolução Molecular , Variação Genética
2.
Nature ; 584(7821): 415-419, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641829

RESUMO

Sexual dimorphism arises from genetic differences between male and female cells, and from systemic hormonal differences1-3. How sex hormones affect non-reproductive organs is poorly understood, yet highly relevant to health given the sex-biased incidence of many diseases4. Here we report that steroid signalling in Drosophila from the ovaries to the gut promotes growth of the intestine specifically in mated females, and enhances their reproductive output. The active ovaries of the fly produce the steroid hormone ecdysone, which stimulates the division and expansion of intestinal stem cells in two distinct proliferative phases via the steroid receptors EcR and Usp and their downstream targets Broad, Eip75B and Hr3. Although ecdysone-dependent growth of the female gut augments fecundity, the more active and more numerous intestinal stem cells also increase female susceptibility to age-dependent gut dysplasia and tumorigenesis, thus potentially reducing lifespan. This work highlights the trade-offs in fitness traits that occur when inter-organ signalling alters stem-cell behaviour to optimize organ size.


Assuntos
Drosophila melanogaster/metabolismo , Fertilidade/fisiologia , Intestinos/crescimento & desenvolvimento , Longevidade/fisiologia , Tamanho do Órgão/fisiologia , Ovário/metabolismo , Esteroides/metabolismo , Envelhecimento , Animais , Carcinogênese , Proliferação de Células , Copulação/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Ecdisona/metabolismo , Feminino , Mucosa Intestinal/anatomia & histologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/anatomia & histologia , Intestinos/citologia , Intestinos/patologia , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074910

RESUMO

E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.


Assuntos
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Proliferação de Células , Imunofluorescência , Mitose , Fases de Leitura Aberta , Processamento Pós-Transcricional do RNA , Estresse Fisiológico/genética , Regiões não Traduzidas , Asas de Animais/metabolismo
4.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541526

RESUMO

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Assuntos
Adenoma , Ceramidas , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Ácidos Graxos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/metabolismo
5.
Cell ; 137(7): 1343-55, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563763

RESUMO

Cells in intestinal epithelia turn over rapidly due to damage from digestion and toxins produced by the enteric microbiota. Gut homeostasis is maintained by intestinal stem cells (ISCs) that divide to replenish the intestinal epithelium, but little is known about how ISC division and differentiation are coordinated with epithelial cell loss. We show here that when enterocytes (ECs) in the Drosophila midgut are subjected to apoptosis, enteric infection, or JNK-mediated stress signaling, they produce cytokines (Upd, Upd2, and Upd3) that activate Jak/Stat signaling in ISCs, promoting their rapid division. Upd/Jak/Stat activity also promotes progenitor cell differentiation, in part by stimulating Delta/Notch signaling, and is required for differentiation in both normal and regenerating midguts. Hence, cytokine-mediated feedback enables stem cells to replace spent progeny as they are lost, thereby establishing gut homeostasis.


Assuntos
Drosophila/citologia , Drosophila/metabolismo , Animais , Apoptose , Citocinas/metabolismo , Drosophila/imunologia , Drosophila/microbiologia , Proteínas de Drosophila/metabolismo , Enterócitos/citologia , Enterócitos/metabolismo , Homeostase , Intestinos/citologia , Intestinos/microbiologia , Intestinos/fisiologia , Janus Quinases/metabolismo , Regeneração , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
6.
Bioessays ; 44(11): e2200150, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36222263

RESUMO

Before a cell divides into two daughter cells, it typically doubles not only its DNA, but also its mass. Numerous studies in cells ranging from yeast to mammals have shown that cellular growth, stimulated by nutrients and/or growth factor signaling, is a prerequisite for cell cycle progression in most types of cells. The textbook view of growth-regulated cell cycles is that growth signaling activates the transcription of G1 Cyclin genes to induce cell proliferation, and also stimulates anabolic metabolism and cell growth in parallel. However, genetic knockout tests in model organisms indicate that this is not the whole story, and new studies show that additional, "smarter" mechanisms help to coordinate the cell cycle with growth itself. Here we summarize recent advances in this field, and discuss current models in which growth signaling regulates cell proliferation by targeting core cell cycle regulators via non-transcriptional mechanisms.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular , Proliferação de Células , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Ciclinas/genética , Ciclinas/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mamíferos/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558234

RESUMO

Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.


Assuntos
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Olho Composto de Artrópodes/citologia , Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Mutação com Ganho de Função , Teste de Complementação Genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Fatores de Transcrição/genética
8.
EMBO Rep ; 21(8): e51175, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32715610

RESUMO

The gastrointestinal tract undergoes homeostatic self-renewal to replace aged and damaged epithelial cells. This process, sustained by intestinal stem cells (ISCs), can operate accurately for many years but gradually declines with age. Although stem cell aging has been intensively explored, the mechanisms remain poorly understood. In this issue of EMBO Reports, Du et al report that alpha-lipoic acid (ALA) sustains an active endocytosis-autophagy network that effectively reverses age-dependent ISC hyperplasia in Drosophila (Du et al, 2020). This work suggests a new strategy for treating aging-associated gastrointestinal diseases.


Assuntos
Proteínas de Drosophila , Ácido Tióctico , Envelhecimento , Animais , Autofagia , Senescência Celular , Endossomos , Intestinos , Células-Tronco
9.
Proc Natl Acad Sci U S A ; 116(52): 26591-26598, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843907

RESUMO

Translationally controlled tumor protein (TCTP) is a highly conserved protein functioning in multiple cellular processes, ranging from growth to immune responses. To explore the role of TCTP in tissue maintenance and regeneration, we employed the adult Drosophila midgut, where multiple signaling pathways interact to precisely regulate stem cell division for tissue homeostasis. Tctp levels were significantly increased in stem cells and enteroblasts upon tissue damage or activation of the Hippo pathway that promotes regeneration of intestinal epithelium. Stem cells with reduced Tctp levels failed to proliferate during normal tissue homeostasis and regeneration. Mechanistically, Tctp forms a complex with multiple proteins involved in translation and genetically interacts with ribosomal subunits. In addition, Tctp increases both Akt1 protein abundance and phosphorylation in vivo. Altogether, Tctp regulates stem cell proliferation by interacting with key growth regulatory signaling pathways and the translation process in vivo.

10.
Development ; 145(14)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021843

RESUMO

Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.


Assuntos
Divisão Celular/fisiologia , Replicação do DNA/fisiologia , Poliploidia , Regeneração/fisiologia , Estresse Fisiológico/fisiologia , Animais , Humanos , Especificidade de Órgãos
11.
EMBO J ; 33(24): 2967-82, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25298397

RESUMO

Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero-endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type-specific transcriptome analysis combined with Dam-ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU-domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation-promoting factors, such as Pdm1.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Animais , Trato Gastrointestinal/fisiologia , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica
12.
Nature ; 552(7684): 182-183, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29239369
13.
PLoS Genet ; 11(12): e1005634, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26683696

RESUMO

Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs). Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR) in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic), mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic's nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25), Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt). pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Receptores ErbB/genética , Proteínas HMGB/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas/genética , Receptores de Peptídeos de Invertebrados/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Proliferação de Células/genética , Proteínas de Ligação a DNA/biossíntese , Drosophila/genética , Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/biossíntese , Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , RNA Mensageiro/biossíntese , Proteínas Repressoras/biossíntese , Transdução de Sinais/genética , Células-Tronco/citologia , Fatores de Transcrição/biossíntese
14.
Nature ; 480(7375): 123-7, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037307

RESUMO

Endocycles are variant cell cycles comprised of DNA synthesis (S)- and gap (G)-phases but lacking mitosis. Such cycles facilitate post-mitotic growth in many invertebrate and plant cells, and are so ubiquitous that they may account for up to half the world's biomass. DNA replication in endocycling Drosophila cells is triggered by cyclin E/cyclin dependent kinase 2 (CYCE/CDK2), but this kinase must be inactivated during each G-phase to allow the assembly of pre-Replication Complexes (preRCs) for the next S-phase. How CYCE/CDK2 is periodically silenced to allow re-replication has not been established. Here, using genetic tests in parallel with computational modelling, we show that the endocycles of Drosophila are driven by a molecular oscillator in which the E2F1 transcription factor promotes CycE expression and S-phase initiation, S-phase then activates the CRL4(CDT2) ubiquitin ligase, and this in turn mediates the destruction of E2F1 (ref. 7). We propose that it is the transient loss of E2F1 during S phases that creates the window of low Cdk activity required for preRC formation. In support of this model overexpressed E2F1 accelerated endocycling, whereas a stabilized variant of E2F1 blocked endocycling by deregulating target genes, including CycE, as well as Cdk1 and mitotic cyclins. Moreover, we find that altering cell growth by changing nutrition or target of rapamycin (TOR) signalling impacts E2F1 translation, thereby making endocycle progression growth-dependent. Many of the regulatory interactions essential to this novel cell cycle oscillator are conserved in animals and plants, indicating that elements of this mechanism act in most growth-dependent cell cycles.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Fatores de Transcrição E2F/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Masculino , Fase S/fisiologia , Glândulas Salivares/citologia , Fatores de Transcrição , Complexos Ubiquitina-Proteína Ligase
15.
Semin Cell Dev Biol ; 28: 86-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24685612

RESUMO

Drosophila genetics has long been appreciated as a powerful approach for discovering the normal functions of genes that act as oncogenes and tumor suppressors in human cancer. Recent studies have also highlighted its advantages for deciphering how such genes function during tumorigenesis itself. Here we detail studies relating to how tumors, generated in developing organs and adult stem cell-based tissues, remodel the tissue landscape to their benefit. Like mammalian tumors, insect tumors can dissolve extracellular matrix, recruit blood cells, migrate and invade other tissues. While much is known about how mammalian fibroblasts, immune cells and vasculature promote late tumorigenesis, less is understood about the very earliest stages of tumor development in mammals. Because Drosophila has fewer mitotic cells and a simpler tissue architecture, it affords easy detection and analysis of early clonal tumor growth. Drosophila studies have revealed both cooperative and competitive interactions between tumor and normal cells during early tumor growth. During development, these interactions typically occur with other proliferative progenitor cells, but in adult stem cell-based tissues, the stem cell niche can fuel tumor growth.


Assuntos
Diferenciação Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Células-Tronco/citologia , Animais , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Drosophila , Humanos , Neoplasias/patologia
16.
Dev Biol ; 399(2): 189-203, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25553980

RESUMO

Maintaining tissue homeostasis is a critical process during infection and inflammation. Tissues with a high intrinsic turnover, such as the intestinal epithelium, must launch a rapid response to infections while simultaneously coordinating cell proliferation and differentiation decisions. In this study, we searched for genes required for regeneration of the Drosophila intestine, and thereby affecting overall organism survival after infection with pathogenic bacteria. We found that Dpp/Gbb (BMP) signaling is essential for normal midgut regeneration, and that infection induces the BMP signaling ligands Dpp and Gbb. We demonstrate that Dpp is induced in visceral muscle and required for signaling activation. Subsequently, Gbb is induced in enterocytes after oral infection. Loss-of Dpp signaling in ISCs and transient committed progenitors called enteroblasts (EBs), or in EBs alone, led to a blockage in EC differentiation or maturation. Furthermore, our data show that down-regulation of Dpp signaling in the precursor cells including EBs also resulted in an increased number of abnormally small Pdm1-positive cells, suggesting a role of Dpp/Gbb signaling in EC growth. In addition, we show that Dpp/Gbb signaling acted downstream or in parallel to the Notch pathway to promote EC differentiation and growth. Our results suggest that Dpp/BMP signaling plays an important role in EBs to maintain tissue integrity and homeostasis during pathogenic infections.


Assuntos
Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Mucosa Intestinal/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Drosophila/microbiologia , Proteínas de Drosophila/metabolismo , Enterócitos/metabolismo , Enterócitos/fisiologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Mucosa Intestinal/microbiologia , Microscopia Confocal , Músculos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/metabolismo
17.
EMBO J ; 31(11): 2441-3, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22580826

RESUMO

To maintain tissue homeostasis, stem cells must balance self-renewal with differentiation. In some stem cell lineages this process is 'hard-wired' by the asymmetric partitioning of determinants at division, such that one stem cell daughter always remains pluripotent and other differentiates. But in a dynamic tissue like the intestinal epithelium, which might need to repair itself following an infection or expand to digest the fall harvest, this balancing act requires more flexibility. Recent studies of intestinal stem cell (ISC) lineages in the fruit fly and mouse provide new insights into how this plasticity is achieved. The mechanisms in these two homologous but rather different organs have remarkable similarities, and so are likely relevant to how stem cell pools are controlled in organs other than the intestine.


Assuntos
Divisão Celular , Drosophila melanogaster/fisiologia , Homeostase/fisiologia , Intestinos/fisiologia , Células-Tronco/fisiologia , Animais , Feminino
18.
Nucleic Acids Res ; 42(7): e57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482443

RESUMO

Heterogeneity in genetic networks across different signaling molecular contexts can suggest molecular regulatory mechanisms. Here we describe a comparative chi-square analysis (CPχ(2)) method, considerably more flexible and effective than other alternatives, to screen large gene expression data sets for conserved and differential interactions. CPχ(2) decomposes interactions across conditions to assess homogeneity and heterogeneity. Theoretically, we prove an asymptotic chi-square null distribution for the interaction heterogeneity statistic. Empirically, on synthetic yeast cell cycle data, CPχ(2) achieved much higher statistical power in detecting differential networks than alternative approaches. We applied CPχ(2) to Drosophila melanogaster wing gene expression arrays collected under normal conditions, and conditions with overexpressed E2F and Cabut, two transcription factor complexes that promote ectopic cell cycling. The resulting differential networks suggest a mechanism by which E2F and Cabut regulate distinct gene interactions, while still sharing a small core network. Thus, CPχ(2) is sensitive in detecting network rewiring, useful in comparing related biological systems.


Assuntos
Redes Reguladoras de Genes , Animais , Ciclo Celular/genética , Distribuição de Qui-Quadrado , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Fatores de Transcrição E2F/fisiologia , Perfilação da Expressão Gênica , Fatores de Transcrição/fisiologia , Leveduras/genética
19.
PLoS Genet ; 9(9): e1003835, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086162

RESUMO

The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição E2F/metabolismo , Proteínas de Choque Térmico/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila melanogaster/genética , Fatores de Transcrição E2F/genética , Proteínas de Choque Térmico/metabolismo , Mitose/genética , Fatores de Transcrição , Complexos Ubiquitina-Proteína Ligase/genética
20.
Dev Dyn ; 243(6): 818-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24591046

RESUMO

BACKGROUND: The Decapentaplegic (Dpp) signaling pathway is used in many developmental and homeostatic contexts, each time resulting in cellular responses particular to that biological niche. The flexibility of Dpp signaling is clearly evident in epithelial cells of the Drosophila wing imaginal disc. During larval stages of development, Dpp functions as a morphogen, patterning the wing developmental field and stimulating tissue growth. A short time later, however, as wing-epithelial cells exit the cell cycle and begin to differentiate, Dpp is a critical determinant of vein-cell fate. It is likely that the Dpp signaling pathway regulates different sets of target genes at these two developmental time points. RESULTS: To identify mechanisms that temporally control the transcriptional output of Dpp signaling in this system, we have taken a gene expression profiling approach. We identified genes affected by Dpp signaling at late larval or early pupal developmental time points, thereby identifying patterning- and differentiation-specific downstream targets, respectively. CONCLUSIONS: Analysis of target genes and transcription factor binding sites associated with these groups of genes revealed potential mechanisms by which target-gene specificity of the Dpp signaling pathway is temporally regulated. In addition, this approach revealed novel mechanisms by which Dpp affects the cellular differentiation of wing-veins.


Assuntos
Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Discos Imaginais/embriologia , Transdução de Sinais/fisiologia , Asas de Animais/embriologia , Animais , Proteínas de Drosophila/imunologia , Drosophila melanogaster , Embrião não Mamífero/citologia , Discos Imaginais/citologia , Asas de Animais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA