Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123810, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232630

RESUMO

Hematite has been used as a pigment since ancient times, due to its natural abundance and colour that ranges from vivid red to purple. Caput mortuum is a purple α-Fe2O3 whose colour has been ascribed as originating from particle size. In this work, submicrometric synthetic, natural and commercial hematites were investigated by diffuse reflectance spectroscopy (DRS), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and Raman microscopy aiming to clarify the origin of the purple colour. From the results it was concluded that the purple colour is associated with crystallinity, that promotes a significant decrease in absorption below 500 nm and, simultaneously, an increase in the 6A1(6S) → 4T1(4G) d-d transition at ca. 880 nm. The behaviour of the ca. 880 nm band can be explained by the more extensive magnetic interaction between adjacent Fe3+ ions in crystalline samples but cannot explain the spectral behaviour in the green-blue region considering only the d-d transitions. A plausible explanation is that in the distorted FeO6 octahedra, both the Fe-O distances and the Fe-O-Fe angles area are affected, thus interfering in the low energy oxygen-to-iron charge transfer transition, whose tail span the 400 nm - 500 nm region and is more intense than the d-d transitions in hematite nanoparticles, nanofilms and defective (red) Fe2O3 samples. The decrease in the intensity of the charge transfer band as a consequence of the FeO6 octahedral distortion is yet to be confirmed by further experiments, but the experimental results clearly show that the purple colour of hematite is due to a decrease in optical absorption below 500 nm.

2.
Food Chem (Oxf) ; 8: 100204, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38659653

RESUMO

In this work, we used Raman spectroscopy to identify compounds present at different maturation stages of the exocarp of scarlet eggplant and two banana cultivars, 'prata' and 'nanica'. Raman spectral analyses of both fruits showed bands attributed to phenolic acids, flavonoids, carotenoids, and fatty acids. During the scarlet eggplant's maturation process, Raman spectral profile changes are mainly observed in the carotenoid content rather than flavonoids. Furthermore, it is suggested that naringenin chalcone together with ß-carotene determines the orange-red color of the ripe stage. Variations in chemical composition among the maturation stages of bananas were observed predominantly in 'prata' when compared to 'nanica'. In contrast to scarlet eggplant changes in the spectral profile were more evident in the content of the flavonoid/phenolic acids. The in situ analysis was demonstrated to be useful as a guide in selecting bioactive compounds on demand from low-cost horticultural waste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA