Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554680

RESUMO

Ocular herpes simplex keratitis (HSK) is a consequence of viral reactivations from trigeminal ganglia (TG) and occurs almost exclusively in the same eye in humans. In our murine oro-ocular (OO) model, herpes simplex virus 1 (HSV-1) inoculation in one side of the lip propagates virus to infect the ipsilateral TG. Replication here allows infection of the brainstem and infection of the contralateral TG. Interestingly, HSK was observed in our OO model only from the eye ipsilateral to the site of lip infection. Thus, unilateral restriction of HSV-1 may be due to differential kinetics of virus arrival in the ipsilateral versus contralateral TG. We inoculated mice with HSV-1 reporter viruses and then superinfected them to monitor changes in acute- and latent-phase gene expression in TG after superinfection compared to the control (single inoculation). Delaying superinfection by 4 days after initial right lip inoculation elicited failed superinfecting-virus gene expression and eliminated clinical signs of disease. Initial inoculation with thymidine kinase-deficient HSV-1 (TKdel) completely abolished reactivation of wild-type (WT) superinfecting virus from TG during the latent stage. In light of these seemingly failed infections, viral genome was detected in both TG. Our data demonstrate that inoculation of HSV-1 in the lip propagates virus to both TG, but with delay in reaching the TG contralateral to the side of lip infection. This delay is responsible for restricting viral replication to the ipsilateral TG, which abrogates ocular disease and viral reactivations from the contralateral side. These observations may help to understand why HSK is observed unilaterally in humans, and they provide insight into vaccine strategies to protect against HSK.IMPORTANCE Herpetic keratitis (HK) is the leading cause of blindness by an infectious agent in the developed world. This disease can occur after reactivation of herpes simplex virus 1 in the trigeminal ganglia, leading to dissemination of virus to, and infection of, the cornea. A clinical paradox is evidenced by the bilateral presence of latent viral genomes in both trigeminal ganglia, while for any given patient the disease is unilateral with recurrences in a single eye. Our study links the kinetics of early infection to unilateral disease phenomenon and demonstrates protection against viral reactivation when kinetics are exploited. Our results have direct implications in the understanding of human disease pathogenesis and immunotherapeutic strategies for the treatment of HK and viral reactivations.


Assuntos
Herpesvirus Humano 1/fisiologia , Ceratite Herpética/virologia , Lábio/virologia , Latência Viral/fisiologia , Replicação Viral/fisiologia , Animais , Córnea/virologia , Feminino , Regulação Viral da Expressão Gênica , Genes Virais/genética , Herpesvirus Humano 1/genética , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Gânglio Trigeminal/virologia , Latência Viral/genética
2.
Proc Natl Acad Sci U S A ; 113(36): 10085-90, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27528682

RESUMO

Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Herpes Simples/virologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Infecções por Orthomyxoviridae/virologia , Infecções Tumorais por Vírus/virologia , Fatores de Transcrição ARNTL/deficiência , Animais , Transporte Biológico , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular , Montagem e Desmontagem da Cromatina , Ritmo Circadiano/genética , Cricetinae , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Regulação da Expressão Gênica , Genes Reporter , Herpes Simples/genética , Herpes Simples/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Rhadinovirus/patogenicidade , Rhadinovirus/fisiologia , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/metabolismo , Replicação Viral
3.
PLoS Pathog ; 12(4): e1005539, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27055281

RESUMO

Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or ß-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Neurônios/metabolismo , Transcrição Gênica , Proteínas Virais/genética , Latência Viral/genética , Fenômenos Fisiológicos Virais/genética , Animais , Células Cultivadas , Epigênese Genética/genética , Expressão Gênica/genética , RNA Viral/genética , RNA Viral/metabolismo
4.
J Virol ; 88(8): 3965-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501409

RESUMO

UNLABELLED: Lymphocyte colonization by gammaherpesviruses (γHVs) is an important target for cancer prevention. However, how it works is not clear. Epstein-Barr virus drives autonomous B cell proliferation in vitro but in vivo may more subtly exploit the proliferative pathways provided by lymphoid germinal centers (GCs). Murid herpesvirus 4 (MuHV-4), which realistically infects inbred mice, provides a useful tool with which to understand further how a γHV colonizes B cells in vivo. Not all γHVs necessarily behave the same, but common events can with MuHV-4 be assigned an importance for host colonization and so a potential as therapeutic targets. MuHV-4-driven B cell proliferation depends quantitatively on CD4(+) T cell help. Here we show that it also depends on T cell-independent survival signals provided by the B cell-activating factor (BAFF) receptor (BAFF-R). B cells could be infected in BAFF-R(-/-) mice, but virus loads remained low. This corresponded to a BAFF-R-dependent defect in GC colonization. The close parallels between normal, antigen-driven B cell responses and virus-infected B cell proliferation argue that in vivo, γHVs mostly induce infected B cells into normal GC reactions rather than generating large numbers of autonomously proliferating blasts. IMPORTANCE: γHVs cause cancers by driving the proliferation of infected cells. B cells are a particular target. Thus, we need to know how virus-driven B cell proliferation works. Controversy exists as to whether viral genes drive it directly or less directly orchestrate the engagement of normal, host-driven pathways. Here we show that the B cell proliferation driven by a murid γHV requires BAFF-R. This supports the idea that γHVs exploit host proliferation pathways and suggests that interfering with BAFF-R could more generally reduce γHV-associated B cell proliferation.


Assuntos
Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/deficiência , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Rhadinovirus/fisiologia , Animais , Receptor do Fator Ativador de Células B/genética , Linfócitos B/metabolismo , Linfócitos B/virologia , Feminino , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rhadinovirus/genética
5.
PLoS Pathog ; 9(8): e1003514, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950709

RESUMO

Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome.


Assuntos
Genoma Humano , Herpesvirus Humano 1/fisiologia , Interleucinas/biossíntese , Complexo Mediador/biossíntese , Regulação para Cima , Replicação Viral/fisiologia , Deleção de Genes , Células HeLa , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/metabolismo , Humanos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferons , Interleucinas/genética , Interleucinas/imunologia , Complexo Mediador/genética , Complexo Mediador/imunologia , Polimorfismo de Nucleotídeo Único , RNA Polimerase II/genética , RNA Polimerase II/imunologia , RNA Polimerase II/metabolismo
6.
J Virol ; 87(19): 10477-88, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23903843

RESUMO

Herpes simplex virus 1 (HSV-1) is a ubiquitous and important human pathogen. It is known to persist in trigeminal ganglia (TG), but how it reaches this site has been difficult to determine, as viral transmission is sporadic, pathogenesis is complicated, and early infection is largely asymptomatic. We used mice to compare the most likely natural HSV-1 host entry routes: oral and nasal. Intranasal infection was 100-fold more efficient than oral and targeted predominantly the olfactory neuroepithelium. Live imaging of HSV-1-expressed luciferase showed infection progressing from the nose to the TG and then reemerging in the facial skin. The brain remained largely luciferase negative throughout. Infected cell tagging by viral Cre recombinase expression in floxed reporter gene mice showed nasal virus routinely reaching the TG and only rarely reaching the olfactory bulbs. Thus, HSV-1 spread from the olfactory neuroepithelium to the TG and reemerged peripherally without causing significant neurological disease. This recapitulation of typical clinical infection suggests that HSV-1 might sometimes also enter humans via the respiratory tract.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Células Neuroepiteliais/virologia , Bulbo Olfatório/virologia , Gânglio Trigeminal/virologia , Internalização do Vírus , Animais , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Técnicas Imunoenzimáticas , Rim/metabolismo , Rim/patologia , Rim/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Neuroepiteliais/metabolismo , Células Neuroepiteliais/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/patologia , Replicação Viral
7.
PLoS Pathog ; 8(11): e1002986, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133384

RESUMO

Herpesviruses are ubiquitous pathogens that cause much disease. The difficulty of clearing their established infections makes host entry an important target for control. However, while herpesviruses have been studied extensively in vitro, how they cross differentiated mucus-covered epithelia in vivo is unclear. To establish general principles we tracked host entry by Murid Herpesvirus-4 (MuHV-4), a lymphotropic rhadinovirus related to the Kaposi's Sarcoma-associated Herpesvirus. Spontaneously acquired virions targeted the olfactory neuroepithelium. Like many herpesviruses, MuHV-4 binds to heparan sulfate (HS), and virions unable to bind HS showed poor host entry. While the respiratory epithelium expressed only basolateral HS and was bound poorly by incoming virions, the neuroepithelium also displayed HS on its apical neuronal cilia and was bound strongly. Incoming virions tracked down the neuronal cilia, and either infected neurons or reached the underlying microvilli of the adjacent glial (sustentacular) cells and infected them. Thus the olfactory neuroepithelium provides an important and complex site of HS-dependent herpesvirus uptake.


Assuntos
Heparitina Sulfato/metabolismo , Infecções por Herpesviridae/metabolismo , Células Neuroepiteliais/metabolismo , Bulbo Olfatório/metabolismo , Rhadinovirus/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Cricetinae , Infecções por Herpesviridae/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Células Neuroepiteliais/patologia , Células Neuroepiteliais/virologia , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Rhadinovirus/patogenicidade
8.
PLoS Pathog ; 7(10): e1002278, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21998580

RESUMO

Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Ceratite Herpética/patologia , Transativadores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Olho/patologia , Olho/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Humanos , Proteínas Imediatamente Precoces/genética , Ceratite Herpética/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência/métodos , Neovascularização Patológica/genética , Plasmídeos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética
9.
mBio ; 14(1): e0354222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36692302

RESUMO

Transcription of herpes simplex virus 1 (HSV-1) immediate early (IE) genes is controlled at multiple levels by the cellular transcriptional coactivator, HCF-1. HCF-1 is complexed with epigenetic factors that prevent silencing of the viral genome upon infection, transcription factors that drive initiation of IE gene expression, and transcription elongation factors required to circumvent RNAPII pausing at IE genes and promote productive IE mRNA synthesis. Significantly, the coactivator is also implicated in the control of viral reactivation from latency in sensory neurons based on studies that demonstrate that HCF-1-associated epigenetic and transcriptional elongation complexes are critical to initiate IE expression and viral reactivation. Here, an HCF-1 conditional knockout mouse model (HCF-1cKO) was derived to probe the role and significance of HCF-1 in the regulation of HSV-1 latency/reactivation in vivo. Upon deletion of HCF-1 in sensory neurons, there is a striking reduction in the number of latently infected neurons that initiate viral reactivation. Importantly, this correlated with a defect in the removal of repressive chromatin associated with latent viral genomes. These data demonstrate that HCF-1 is a critical regulatory factor that governs the initiation of HSV reactivation, in part, by promoting the transition of latent viral genomes from a repressed heterochromatic state. IMPORTANCE Herpes simplex virus is responsible for a substantial worldwide disease burden. An initial infection leads to the establishment of a lifelong persistent infection in sensory neurons. Periodic reactivation can result in recurrent oral and genital lesions to more significant ocular disease. Despite the significance of this pathogen, many of the regulatory factors and molecular mechanisms that govern the viral latency-reactivation cycles have yet to be elucidated. Initiation of both lytic infection and reactivation are dependent on the expression of the viral immediate early genes. In vivo deletion of a central component of the IE regulatory paradigm, the cellular transcriptional coactivator HCF-1, reduces the epigenetic transition of latent viral genomes, thus suppressing HSV reactivation. These observations define HCF-1 as a critical regulator that controls the initiation of HSV reactivation from latency in vivo and contribute to understanding of the molecular mechanisms that govern viral reactivation.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Heterocromatina , Fatores de Transcrição/metabolismo , Transcrição Gênica , Latência Viral/fisiologia
10.
J Gen Virol ; 93(Pt 10): 2118-2130, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22815272

RESUMO

Recent RNA interference (RNAi) studies have identified many host proteins that modulate virus infection, but small interfering RNA 'off-target' effects and the use of transformed cell lines limit their conclusiveness. As murine embryonic stem (mES) cells can be genetically modified and resources exist where many and eventually all known mouse genes are insertionally inactivated, it was reasoned that mES cells would provide a useful alternative to RNAi screens. Beyond allowing investigation of host-pathogen interactions in vitro, mES cells have the potential to differentiate into other primary cell types, as well as being used to generate knockout mice for in vivo studies. However, mES cells are poorly characterized for virus infection. To investigate whether ES cells can be used to explore host-virus interactions, this study characterized the responses of mES cells following infection by herpes simplex virus type 1 (HSV-1) and influenza A virus. HSV-1 replicated lytically in mES cells, although mES cells were less permissive than most other cell types tested. Influenza virus was able to enter mES cells and express some viral proteins, but the replication cycle was incomplete and no infectious virus was produced. Knockdown of the host protein AHCYL1 in mES cells reduced HSV-1 replication, showing the potential for using mES cells to study host-virus interactions. Transcriptional profiling, however, indicated the lack of an efficient innate immune response in these cells. mES cells may thus be useful to identify host proteins that play a role in virus replication, but they are not suitable to determine factors that are involved in innate host defence.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/virologia , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/genética , Replicação Viral/genética , Animais , Linhagem Celular , Cricetinae , Replicação do DNA/genética , Cães , Células-Tronco Embrionárias/metabolismo , Células HeLa , Herpes Simples/genética , Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , RNA Interferente Pequeno/genética , Transcrição Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Gen Virol ; 92(Pt 11): 2575-2585, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21752961

RESUMO

Herpes simplex virus (HSV) type-1 establishes lifelong latency in sensory neurones and it is widely assumed that latency is the consequence of a failure to initiate virus immediate-early (IE) gene expression. However, using a Cre reporter mouse system in conjunction with Cre-expressing HSV-1 recombinants we have previously shown that activation of the IE ICP0 promoter can precede latency establishment in at least 30% of latently infected cells. During productive infection of non-neuronal cells, IE promoter activation is largely dependent on the transactivator VP16 a late structural component of the virion. Of significance, VP16 has recently been shown to exhibit altered regulation in neurones; where its de novo synthesis is necessary for IE gene expression during both lytic infection and reactivation from latency. In the current study, we utilized the Cre reporter mouse model system to characterize the full extent of viral promoter activity compatible with cell survival and latency establishment. In contrast to the high frequency activation of representative IE promoters prior to latency establishment, cell marking using a virus recombinant expressing Cre under VP16 promoter control was very inefficient. Furthermore, infection of neuronal cultures with VP16 mutants reveals a strong VP16 requirement for IE promoter activity in non-neuronal cells, but not sensory neurones. We conclude that only IE promoter activation can efficiently precede latency establishment and that this activation is likely to occur through a VP16-independent mechanism.


Assuntos
Regulação Viral da Expressão Gênica , Genes Precoces , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Regiões Promotoras Genéticas , Células Receptoras Sensoriais/virologia , Latência Viral , Animais , Feminino , Herpesvirus Humano 1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
12.
J Gen Virol ; 91(Pt 9): 2176-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20573854

RESUMO

Cancers with viral aetiologies can potentially be prevented by antiviral vaccines. Therefore, it is important to understand how viral infections and cancers might be linked. Some cancers frequently carry gammaherpesvirus genomes. However, they generally express the same viral genes as non-transformed cells, and differ mainly in also carrying oncogenic host mutations. Infection, therefore, seems to play a triggering or accessory role in disease. The hit-and-run hypothesis proposes that cumulative host mutations can allow viral genomes to be lost entirely, such that cancers remaining virus-positive represent only a fraction of those to which infection contributes. This would have considerable implications for disease control. However, the hit-and-run hypothesis has so far lacked experimental support. Here, we tested it by using Cre-lox recombination to trigger transforming mutations in virus-infected cells. Thus, 'floxed' oncogene mice were infected with Cre recombinase-positive murid herpesvirus-4 (MuHV-4). The emerging cancers showed the expected genetic changes but, by the time of presentation, almost all lacked viral genomes. Vaccination with a non-persistent MuHV-4 mutant nonetheless conferred complete protection. Equivalent human gammaherpesvirus vaccines could therefore potentially prevent not only viral genome-positive cancers, but possibly also some cancers less suspected of a viral origin because of viral genome loss.


Assuntos
Vacinas Anticâncer/farmacologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Rhadinovirus/imunologia , Rhadinovirus/patogenicidade , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/prevenção & controle , Vacinas Virais/farmacologia , Animais , Sequência de Bases , Primers do DNA/genética , Genes p53 , Genes ras , Genoma Viral , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Modelos Biológicos , Mutagênese Insercional , Mutação , Rhadinovirus/genética , Sarcoma Experimental/genética , Sarcoma Experimental/imunologia , Sarcoma Experimental/prevenção & controle , Sarcoma Experimental/virologia , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/virologia , Vacinação/métodos
13.
J Gen Virol ; 91(Pt 4): 867-79, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19940063

RESUMO

Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection.


Assuntos
Arvicolinae/virologia , Gammaherpesvirinae/classificação , Murinae/virologia , Rhadinovirus/classificação , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Viral/química , Gammaherpesvirinae/genética , Gammaherpesvirinae/crescimento & desenvolvimento , Genoma Viral , Dados de Sequência Molecular , Rhadinovirus/genética , Rhadinovirus/crescimento & desenvolvimento , Proteínas da Matriz Viral/análise , Proteínas da Matriz Viral/genética
15.
Viral Immunol ; 18(3): 445-56, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16212523

RESUMO

The murine gamma-herpesvirus-68 (MHV-68) is a relative of the Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) that infects mice. All these gamma-herpesviruses are subject to immune control, but limit the impact of this control through immune evasion. Molecular evasion mechanisms have been described in abundance. However, we can only speculate what EBV and KSHV immune evasion contributes to the viral lifecycle. With MHV-68, we can analyze in vivo the contribution of immunological and virological gene expression to pathogenesis. While the physiology of infection seems quite well conserved between these viruses, the pathologies associated with immune suppression are obviously very different. MHV-68 is therefore more suited to uncovering the basic biology of gamma-herpesvirus infection than to testing disease interventions. Nevertheless, it may make some useful predictions about effective strategies of vaccination and infection control. This review aims to outline our current state of knowledge and to highlight some limitations of the MHV-68 model as it stands, in the hope of stimulating constructive progress.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Animais , Anticorpos Antivirais , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/patogenicidade , Genes Virais , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/imunologia , Herpesvirus Humano 8/patogenicidade , Humanos , Camundongos , Modelos Biológicos , Linfócitos T/imunologia , Vacinação
16.
Nat Commun ; 6: 7126, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25989971

RESUMO

Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/genética , Transcrição Gênica , Processamento Alternativo , Códon de Terminação , Meios de Cultura , Éxons , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Genes Virais , Genoma Viral , Humanos , Íntrons , Fases de Leitura Aberta , Poli A , Biossíntese de Proteínas , RNA/biossíntese , RNA Mensageiro/metabolismo , Ribossomos/ultraestrutura , Fatores de Tempo , Replicação Viral/genética
17.
PLoS One ; 10(11): e0142751, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26562415

RESUMO

The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.


Assuntos
Ebolavirus/genética , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/diagnóstico , Lentivirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , Vírion/genética , África Ocidental/epidemiologia , Calibragem , Células HEK293 , HIV-1/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Humanos , Técnicas de Amplificação de Ácido Nucleico/normas , RNA Viral/isolamento & purificação , Padrões de Referência
18.
Microbes Infect ; 4(11): 1177-82, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12361918

RESUMO

CD8(+) T cells are generally considered a key defence against herpesviruses. The murine gamma-herpesvirus-68 encodes two proteins that limit their efficacy. M3 neutralizes chemokines, while K3 downregulates MHC class I glycoproteins. The consequence of this evasion is that CD4(+) T cells are essential to the control of persistent infection.


Assuntos
Infecções por Herpesviridae/imunologia , Rhadinovirus/patogenicidade , Infecções Tumorais por Vírus/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Genes MHC Classe I/genética , Infecções por Herpesviridae/patologia , Interferon gama/imunologia , Camundongos , Modelos Biológicos , Rhadinovirus/imunologia , Infecções Tumorais por Vírus/patologia , Latência Viral/imunologia , Latência Viral/fisiologia
19.
Invest Ophthalmol Vis Sci ; 44(1): 217-25, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12506078

RESUMO

PURPOSE: To localize the sites of HSV1 latency in mice after a primary infection induced by injection into the lip and to assess their connection to the eye. METHODS: The SC16 strain of HSV1, or a recombinant virus containing the HSV1 latency-associated transcript (LAT)-promoter driving expression of the LacZ reporter gene, were injected into the left upper lip. Tissues from animals killed at 6, 28, 180, and 720 days postinoculation (dpi) were analyzed for LATs, either by in situ hybridization (ISH) or by identifying LAT-promoter-driven transgene expression. HSV1 antigens were detected by immunochemistry. RESULTS: At 28 dpi, all the neurologic structures that were acutely infected at 6 dpi exhibited a pattern of virus gene expression consistent with HSV1 latency--that is, LATs with no detectable HSV1 antigens. LAT staining differed among structures: intense and widespread within trigeminal neurons, intermediate within the sympathetic intermediolateral cell group of the spinal cord and the facial motor nucleus, and weak in other sites. Long-term expression of LATs (positive at 180 and 720 days) was observed only in tissues where the staining was intense or intermediate at 28 dpi. CONCLUSIONS: After inoculation into the upper lip of mice, HSV1 established latency in several nervous system structures that have direct or indirect connections with ocular tissues. These results suggest that after an oral primary infection, the most frequent in humans, HSV1 may establish latency in several sites connected to the eye and may finally result in herpetic ocular disease involving the cornea, the iris, or even the retina.


Assuntos
Infecções Oculares Virais/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Lábio/virologia , Vias Neurais/virologia , Latência Viral/fisiologia , Animais , Antígenos Virais/análise , Tronco Encefálico/virologia , Corpo Ciliar/inervação , Corpo Ciliar/virologia , Córnea/inervação , Córnea/virologia , Infecções Oculares Virais/patologia , Nervo Facial/virologia , Feminino , Gânglios/virologia , Herpes Simples/patologia , Técnicas Imunoenzimáticas , Hibridização In Situ , Iris/inervação , Iris/virologia , Lábio/inervação , Camundongos , Camundongos Endogâmicos BALB C , Vias Neurais/patologia , Retina/virologia , beta-Galactosidase/metabolismo
20.
Brain Res ; 1024(1-2): 1-15, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15451362

RESUMO

Herpes simplex virus (HSV)-derived vectors have been suggested for potential use in gene therapy for Parkinson's disease (PD). HSV naturally infects adult neuronal cells and possesses a large genome for the insertion of transgenes. In the present study, we have used two different HSV constructs to deliver glial cell line-derived neurotrophic factor (GDNF) to the striatum, and to assess the neuroprotective effects of the GDNF product in an intrastriatal 6-hydroxydopamine lesion model. One construct is blocked for IE gene expression whereas the other is deleted in the thymidine kinase gene. Both constructs induced a significant protection of the dopaminergic neurons in the substantia nigra from the lesions, whereas only one induced a transient behavioural recovery in amphetamine-induced rotation. Unexpectedly, the more deleted virus caused the greater toxicity. This was found to be due to the way the vector was purified. The issue of toxicity, which might account for the variable functional effects, needs resolving prior to therapeutic application of these vectors.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/toxicidade , Fatores de Crescimento Neural/toxicidade , Doença de Parkinson/tratamento farmacológico , Simplexvirus , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Simplexvirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA