Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 145(2): 268-83, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21458045

RESUMO

MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and peptide loading followed by additional high-throughput assays. All data sets were integrated to answer two fundamental questions: what regulates tissue-specific MHC-II transcription, and what controls MHC-II transport in dendritic cells? MHC-II transcription was controlled by nine regulators acting in feedback networks with higher-order control by signaling pathways, including TGFß. MHC-II transport was controlled by the GTPase ARL14/ARF7, which recruits the motor myosin 1E via an effector protein ARF7EP. This complex controls movement of MHC-II vesicles along the actin cytoskeleton in human dendritic cells (DCs). These genome-wide systems analyses have thus identified factors and pathways controlling MHC-II transcription and transport, defining targets for manipulation of MHC-II antigen presentation in infection and autoimmunity.


Assuntos
Apresentação de Antígeno , Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade Classe II/imunologia , Actinas/metabolismo , Autoimunidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Miosinas/metabolismo , Interferência de RNA
2.
Nature ; 556(7702): 457-462, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643510

RESUMO

Every cancer originates from a single cell. During expansion of the neoplastic cell population, individual cells acquire genetic and phenotypic differences from each other. Here, to investigate the nature and extent of intra-tumour diversification, we characterized organoids derived from multiple single cells from three colorectal cancers as well as from adjacent normal intestinal crypts. Colorectal cancer cells showed extensive mutational diversification and carried several times more somatic mutations than normal colorectal cells. Most mutations were acquired during the final dominant clonal expansion of the cancer and resulted from mutational processes that are absent from normal colorectal cells. Intra-tumour diversification of DNA methylation and transcriptome states also occurred; these alterations were cell-autonomous, stable, and followed the phylogenetic tree of each cancer. There were marked differences in responses to anticancer drugs between even closely related cells of the same tumour. The results indicate that colorectal cancer cells experience substantial increases in somatic mutation rate compared to normal colorectal cells, and that genetic diversification of each cancer is accompanied by pervasive, stable and inherited differences in the biological states of individual cancer cells.


Assuntos
Antineoplásicos/farmacologia , Células Clonais/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Evolução Molecular , Mutação , Análise de Célula Única , Proliferação de Células , Células Clonais/metabolismo , Células Clonais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Metilação de DNA , Análise Mutacional de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Taxa de Mutação , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 115(17): E3996-E4005, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632210

RESUMO

Wnt/ß-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt-FZD assemblies via intramembrane interactions. Subsequently, these Wnt-FZD-TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/metabolismo , Animais , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Proteína Wnt3A/genética
4.
Pediatr Blood Cancer ; 66(8): e27785, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31044544

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease regarding morphology, immunophenotyping, genetic abnormalities, and clinical behavior. The overall survival rate of pediatric AML is 60% to 70%, and has not significantly improved over the past two decades. Children with Down syndrome (DS) are at risk of developing acute megakaryoblastic leukemia (AMKL), which can be preceded by a transient myeloproliferative disorder during the neonatal period. Intensification of current treatment protocols is not feasible due to already high treatment-related morbidity and mortality. Instead, more targeted therapies with less severe side effects are highly needed. PROCEDURE: To identify potential novel therapeutic targets for myeloid disorders in children, including DS-AMKL and non-DS-AML, we performed an unbiased compound screen of 80 small molecules targeting epigenetic regulators in three pediatric AML cell lines that are representative for different subtypes of pediatric AML. Three candidate compounds were validated and further evaluated in normal myeloid precursor cells during neutrophil differentiation and in (pre-)leukemic pediatric patient cells. RESULTS: Candidate drugs LMK235, NSC3852, and bromosporine were effective in all tested pediatric AML cell lines with antiproliferative, proapoptotic, and differentiation effects. Out of these three compounds, the pan-histone deacetylase inhibitor NSC3852 specifically induced growth arrest and apoptosis in pediatric AML cells, without disrupting normal neutrophil differentiation. CONCLUSION: NSC3852 is a potential candidate drug for further preclinical testing in pediatric AML and DS-AMKL.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Hidroxiquinolinas/farmacologia , Leucemia Mieloide Aguda/patologia , Compostos Nitrosos/farmacologia , Apoptose , Proliferação de Células , Criança , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/patologia , Ensaios de Triagem em Larga Escala , Histona Desacetilases/genética , Humanos , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Reação Leucemoide/tratamento farmacológico , Reação Leucemoide/genética , Reação Leucemoide/patologia , Prognóstico , Células Tumorais Cultivadas
5.
Chromosoma ; 126(4): 473-486, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27354041

RESUMO

Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.


Assuntos
Aurora Quinase A/metabolismo , Cinesinas/metabolismo , Microtúbulos , Fuso Acromático , Estudo de Associação Genômica Ampla , Células HeLa , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mitose , RNA Interferente Pequeno/genética , Fuso Acromático/metabolismo
6.
J Immunol ; 196(9): 3686-94, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016607

RESUMO

In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at modifying pathogenic NET formation should ideally preserve other neutrophil antimicrobial functions. We now show that signal inhibitory receptor on leukocytes-1 (SIRL-1) attenuates NET release by human neutrophils in response to distinct triggers, including opsonized Staphylococcus aureus and inflammatory danger signals. NET release has different kinetics depending on the stimulus, and rapid NET formation is independent of NADPH oxidase activity. In line with this, we show that NET release and reactive oxygen species production upon challenge with opsonized S. aureus require different signaling events. Importantly, engagement of SIRL-1 does not affect bacterially induced production of reactive oxygen species, and intracellular bacterial killing by neutrophils remains intact. Thus, our studies define SIRL-1 as an intervention point of benefit to suppress NET formation in disease while preserving intracellular antimicrobial defense.


Assuntos
Citoplasma/microbiologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Receptores Imunológicos/imunologia , Transdução de Sinais , Staphylococcus aureus/imunologia , Armadilhas Extracelulares/imunologia , Interações Hospedeiro-Patógeno , Humanos , Cinética , NADPH Oxidases/metabolismo , Neutrófilos/microbiologia , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/fisiologia
7.
Nature ; 450(7170): 725-30, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046412

RESUMO

With the emergence of multidrug resistant (MDR) bacteria, it is imperative to develop new intervention strategies. Current antibiotics typically target pathogen rather than host-specific biochemical pathways. Here we have developed kinase inhibitors that prevent intracellular growth of unrelated pathogens such as Salmonella typhimurium and Mycobacterium tuberculosis. An RNA interference screen of the human kinome using automated microscopy revealed several host kinases capable of inhibiting intracellular growth of S. typhimurium. The kinases identified clustered in one network around AKT1 (also known as PKB). Inhibitors of AKT1 prevent intracellular growth of various bacteria including MDR-M. tuberculosis. AKT1 is activated by the S. typhimurium effector SopB, which promotes intracellular survival by controlling actin dynamics through PAK4, and phagosome-lysosome fusion through the AS160 (also known as TBC1D4)-RAB14 pathway. AKT1 inhibitors counteract the bacterial manipulation of host signalling processes, thus controlling intracellular growth of bacteria. By using a reciprocal chemical genetics approach, we identified kinase inhibitors with antibiotic properties and their host targets, and we determined host signalling networks that are activated by intracellular bacteria for survival.


Assuntos
Espaço Intracelular/microbiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Humanos , Espaço Intracelular/efeitos dos fármacos , Isoquinolinas/química , Isoquinolinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Redes e Vias Metabólicas , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , Salmonella typhimurium/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia
8.
Proc Natl Acad Sci U S A ; 107(16): 7257-62, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20360563

RESUMO

Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC(50) approximately 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX.


Assuntos
Ácidos Borônicos/metabolismo , Lisofosfolipídeos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glicoproteínas/química , Humanos , Concentração Inibidora 50 , Lipídeos/química , Masculino , Camundongos , Complexos Multienzimáticos/metabolismo , Fosfodiesterase I/metabolismo , Diester Fosfórico Hidrolases/química , Pirofosfatases/metabolismo , Transdução de Sinais , Tiazolidinedionas/química
9.
J Cell Mol Med ; 16(9): 2140-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22212761

RESUMO

The nuclear factor κB (NF-κB) signalling pathway controls important cellular events such as cell proliferation, differentiation, apoptosis and immune responses. Pathway activation occurs rapidly upon TNFα stimulation and is highly dependent on ubiquitination events. Using cytoplasmic to nuclear translocation of the NF-κB transcription factor family member p65 as a read-out, we screened a synthetic siRNA library targeting enzymes involved in ubiquitin conjugation and de-conjugation for modifiers of regulatory ubiquitination events in NF-κB signalling. We identified F-box protein only 7 (FBXO7), a component of Skp, Cullin, F-box (SCF)-ubiquitin ligase complexes, as a negative regulator of NF-κB signalling. F-box protein only 7 binds to, and mediates ubiquitin conjugation to cIAP1 and TRAF2, resulting in decreased RIP1 ubiquitination and lowered NF-κB signalling activity.


Assuntos
Proteínas F-Box/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas F-Box/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação
10.
Front Pharmacol ; 13: 860682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548337

RESUMO

DNA replication initiation requires the loading of MCM2-7 complexes at the origins of replication during G1. Replication licensing renders chromatin competent for DNA replication and its tight regulation is essential to prevent aberrant DNA replication and genomic instability. CDT1 is a critical factor of licensing and its activity is controlled by redundant mechanisms, including Geminin, a protein inhibitor of CDT1. Aberrant CDT1 and Geminin expression have been shown to promote tumorigenesis in vivo and are also evident in multiple human tumors. In this study, we developed an in vitro AlphaScreen™ high-throughput screening (HTS) assay for the identification of small-molecule inhibitors targeting the CDT1/Geminin protein complex. Biochemical characterization of the most potent compound, AF615, provided evidence of specific, dose-dependent inhibition of Geminin binding to CDT1 both in-vitro and in cells. Moreover, compound AF615 induces DNA damage, inhibits DNA synthesis and reduces viability selectively in cancer cell lines, and this effect is CDT1-dependent. Taken together, our data suggest that AF615 may serve as a useful compound to elucidate the role of CDT1/Geminin protein complex in replication licensing and origin firing as well as a scaffold for further medicinal chemistry optimisation.

11.
Front Endocrinol (Lausanne) ; 13: 926210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966052

RESUMO

Growth hormone (GH) and insulin-like growth factor-1 (IGF1) play an important role in mammalian development, cell proliferation and lifespan. Especially in cases of tumor growth there is an urgent need to control the GH/IGF1 axis. In this study we screened a 38,480-compound library, and in two consecutive rounds of analogues selection, we identified active lead compounds based on the following criteria: inhibition the GH receptor (GHR) activity and its downstream effectors Jak2 and STAT5, and inhibition of growth of breast and colon cancer cells. The most active small molecule (BM001) inhibited both the GH/IGF1 axis and cell proliferation with an IC50 of 10-30 nM of human cancer cells. BM001 depleted GHR in human lymphoblasts. In preclinical xenografted experiments, BM001 showed a strong decrease in tumor volume in mice transplanted with MDA-MB-231 breast cancer cells. Mechanistically, the drug acts on the synthesis of the GHR. Our findings open the possibility to inhibit the GH/IGF1 axis with a small molecule.


Assuntos
Hormônio do Crescimento Humano , Receptores da Somatotropina , Animais , Proliferação de Células , Hormônio do Crescimento/fisiologia , Humanos , Fator de Crescimento Insulin-Like I , Mamíferos , Camundongos
12.
Mol Cancer Ther ; 20(6): 1161-1172, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33850004

RESUMO

Neuroblastoma tumors frequently overexpress the anti-apoptotic protein B-cell lymphoma/leukemia 2 (BCL-2). We previously showed that treating BCL-2-dependent neuroblastoma cells with the BCL-2 inhibitor venetoclax results in apoptosis, but unfortunately partial therapy resistance is observed. The current study describes the identification of drugs capable of resensitizing venetoclax-resistant neuroblastoma cells to venetoclax. To examine these effects, venetoclax resistance was induced in BCL-2-dependent neuroblastoma cell lines KCNR and SJNB12 by continuous exposure to high venetoclax concentrations. Non-resistant and venetoclax-resistant neuroblastoma cell lines were exposed to a 209-compound library in the absence and presence of venetoclax to identify compounds that were more effective in the venetoclax-resistant cell lines under venetoclax pressure. Top hits were further validated in combination with venetoclax using BCL-2-dependent neuroblastoma model systems. Overall, high-throughput drug screening identified the MDM2 inhibitor idasanutlin as a promising resensitizing agent for venetoclax-resistant neuroblastoma cell lines. Idasanutlin treatment induced BAX-mediated apoptosis in venetoclax-resistant neuroblastoma cells in the presence of venetoclax, whereas it caused p21-mediated growth arrest in control cells. In vivo combination treatment showed tumor regression and superior efficacy over single-agent therapies in a BCL-2-dependent neuroblastoma cell line xenograft and a patient-derived xenograft. However, xenografts less dependent on BCL-2 were not sensitive to venetoclax-idasanutlin combination therapy. This study demonstrates that idasanutlin can overcome resistance to the BCL-2 inhibitor venetoclax in preclinical neuroblastoma model systems, which supports clinical development of a treatment strategy combining the two therapies.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/uso terapêutico , Pirrolidinas/uso terapêutico , para-Aminobenzoatos/uso terapêutico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/farmacologia , Pirrolidinas/farmacologia , para-Aminobenzoatos/farmacologia
13.
SLAS Discov ; 25(6): 655-664, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32400262

RESUMO

There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data. This improves the selection and labeling of data for creating training sets before the application of machine learning. We demonstrate this using a high-content genome-wide small interfering RNA screen. We perform an unsupervised exploratory data analysis to facilitate the identification of four robust phenotypes, which we subsequently use as a training set for building a high-quality random forest machine learning model to differentiate four phenotypes with an accuracy of 91.1% and a kappa of 0.85. Our approach enhanced our ability to extract new knowledge from the screen when compared with the use of unsupervised methods alone.


Assuntos
Genômica , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina não Supervisionado , Genoma Humano/genética , Humanos , Fenótipo , RNA Interferente Pequeno/genética
14.
Methods Mol Biol ; 524: 383-405, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19377960

RESUMO

Recombinant major histocompatibility complex (MHC) class I molecules complexed with pathogen-specific or other disease-associated antigens have become essential reagents for the analysis of adaptive T-cell responses. However, conventional techniques for the production of recombinant peptide-MHC (pMHC) complexes are highly involved and thereby limit the use of pMHC complexes in terms of antigen diversity. To make pMHC-based techniques suitable for high-throughput analyses we developed an MHC peptide exchange technology based on the use of conditional MHC ligands. This technology enables the parallel production of thousands of different pMHC complexes within hours, allowing the development of high-throughput MHC-based assay systems to identify MHC ligands and cytotoxic T-cell responses. These high-throughput assays should prove valuable for the screening of entire disease-associated proteomes, including pathogen-encoded proteomes, tumor-associated antigens, and autoimmune antigens.


Assuntos
Mapeamento de Epitopos/métodos , Epitopos de Linfócito T/imunologia , Genes MHC Classe I , Peptídeos/imunologia , Biotinilação , Linfócitos T CD8-Positivos/imunologia , Mapeamento de Epitopos/economia , Humanos , Ligantes , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/genética , Ligação Proteica , Dobramento de Proteína , Raios Ultravioleta
15.
BMC Mol Cell Biol ; 20(1): 29, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382872

RESUMO

BACKGROUND: CD40 is a 48 kDa type I transmembrane protein that is constitutively expressed on hematopoietic cells such as dendritic cells, macrophages, and B cells. Engagement of CD40 by CD40L expressed on T cells results in the production of proinflammatory cytokines, induces T helper cell function, and promotes macrophage activation. The involvement of CD40 in chronic immune activation has resulted in CD40 being proposed as a therapeutic target for a range of chronic inflammatory diseases. CD40 antagonists are currently being explored for the treatment of autoimmune diseases and several anti-CD40 agonist mAbs have entered clinical development for oncological indications. RESULTS: To better understand the mode of action of anti-CD40 mAbs, we have determined the x-ray crystal structures of the ABBV-323 (anti-CD40 antagonist, ravagalimab) Fab alone, ABBV-323 Fab complexed to human CD40 and FAB516 (anti-CD40 agonist) complexed to human CD40. These three crystals structures 1) identify the conformational CD40 epitope for ABBV-323 recognition 2) illustrate conformational changes which occur in the CDRs of ABBV-323 Fab upon CD40 binding and 3) develop a structural hypothesis for an agonist/antagonist switch in the LCDR1 of this proprietary class of CD40 antibodies. CONCLUSIONS: The structure of ABBV-323 Fab demonstrates a unique method for antagonism by stabilizing the proposed functional antiparallel dimer for CD40 receptor via novel contacts to LCDR1, namely residue position R32 which is further supported by a closely related agonist antibody FAB516 which shows only monomeric recognition and no contacts with LCDR1 due to a mutation to L32 on LCDR1. These data provide a structural basis for the full antagonist activity of ABBV-323.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Antígenos CD40/agonistas , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/química , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Transdução de Sinais , Eletricidade Estática
16.
Stem Cells Dev ; 27(2): 133-146, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29179659

RESUMO

Hepatic progenitor cells (HPCs) are adult liver stem cells that act as second line of defense in liver regeneration. They are normally quiescent, but in case of severe liver damage, HPC proliferation is triggered by external activation mechanisms from their niche. Although several important proproliferative mechanisms have been described, it is not known which key intracellular regulators govern the switch between HPC quiescence and active cell cycle. We performed a high-throughput kinome small interfering RNA (siRNA) screen in HepaRG cells, a HPC-like cell line, and evaluated the effect on proliferation with a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. One hit increased the percentage of EdU-positive cells after knockdown: dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Although upon DYRK1A silencing, the percentage of EdU- and phosphorylated histone H3 (pH3)-positive cells was increased, and total cell numbers were not increased, possibly through a subsequent delay in cell cycle progression. This phenotype was confirmed with chemical inhibition of DYRK1A using harmine and with primary HPCs cultured as liver organoids. DYRK1A inhibition impaired Dimerization Partner, RB-like, E2F, and multivulva class B (DREAM) complex formation in HPCs and abolished its transcriptional repression on cell cycle progression. To further analyze DYRK1A function in HPC proliferation, liver organoid cultures were established from mBACtgDyrk1A mice, which harbor one extra copy of the murine Dyrk1a gene (Dyrk+++). Dyrk+++ organoids had both a reduced percentage of EdU-positive cells and reduced proliferation compared with wild-type organoids. This study provides evidence for an essential role of DYRK1A as balanced regulator of S-phase entry in HPCs. An exact gene dosage is crucial, as both DYRK1A deficiency and overexpression affect HPC cell cycle progression.


Assuntos
Células-Tronco Adultas/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Tirosina Quinases/biossíntese , Fase S/fisiologia , Transcrição Gênica/fisiologia , Células-Tronco Adultas/citologia , Linhagem Celular , Humanos , Fígado/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Quinases Dyrk
17.
J Med Chem ; 61(24): 11074-11100, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30384606

RESUMO

A HTS campaign identified compound 1, an excellent hit-like molecule to initiate medicinal chemistry efforts to optimize a dual ROCK1 and ROCK2 inhibitor. Substitution (2-Cl, 2-NH2, 2-F, 3-F) of the pyridine hinge binding motif or replacement with pyrimidine afforded compounds with a clean CYP inhibition profile. Cocrystal structures of an early lead compound were obtained in PKA, ROCK1, and ROCK2. This provided critical structural information for medicinal chemistry to drive compound design. The structural data indicated the preferred configuration at the central benzylic carbon would be ( R), and application of this information to compound design resulted in compound 16. This compound was shown to be a potent and selective dual ROCK inhibitor in both enzyme and cell assays and efficacious in the retinal nerve fiber layer model after oral dosing. This tool compound has been made available through the AbbVie Compound Toolbox. Finally, the cocrystal structures also identified that aspartic acid residues 176 and 218 in ROCK2, which are glutamic acids in PKA, could be targeted as residues to drive both potency and kinome selectivity. Introduction of a piperidin-3-ylmethanamine group to the compound series resulted in compound 58, a potent and selective dual ROCK inhibitor with excellent predicted drug-like properties.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Cristalografia por Raios X , Inibidores do Citocromo P-450 CYP2C9/química , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Meia-Vida , Humanos , Camundongos Endogâmicos C57BL , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Quinases Associadas a rho/química
18.
Cancer Res ; 65(11): 4663-72, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15930284

RESUMO

Kringle 5 (K5) of human plasminogen has been shown to inhibit angiogenesis by inducing the apoptosis of proliferating endothelial cells. Peptide regions around the lysine-binding pocket of K5 largely mediate these effects, particularly the peptide PRKLYDY, which we show to compete with K5 for the binding to endothelial cells. The cell surface binding site for K5 that mediates these effects has not been defined previously. Here, we report that glucose-regulated protein 78, exposed on cell surfaces of proliferating endothelial cells as well as on stressed tumor cells, plays a key role in the antiangiogenic and antitumor activity of K5. We also report that recombinant K5-induced apoptosis of stressed HT1080 fibrosarcoma cells involves enhanced activity of caspase-7, consistent with the disruption of glucose-regulated protein 78-procaspase-7 complexes. These results establish recombinant K5 as an inhibitor of a stress response pathway, which leads to both endothelial and tumor cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/farmacologia , Plasminogênio/farmacologia , Sequência de Aminoácidos , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Apoptose/fisiologia , Sítios de Ligação , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Plasminogênio/antagonistas & inibidores , Plasminogênio/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
19.
Assay Drug Dev Technol ; 15(6): 247-256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837357

RESUMO

In this study, an experiment is conducted to measure the performance in speed and accuracy of interactive visualizations. A platform for interactive data visualizations was implemented using Django, D3, and Angular. Using this platform, a questionnaire was designed to measure a difference in performance between interactive and noninteractive data visualizations. In this questionnaire consisting of 12 questions, participants were given tasks in which they had to identify trends or patterns. Other tasks were directed at comparing and selecting algorithms with a certain outcome based on visualizations. All tasks were performed on high content screening data sets with the help of visualizations. The difference in time to carry out tasks and accuracy of performance was measured between a group viewing interactive visualizations and a group viewing noninteractive visualizations. The study shows a significant advantage in time and accuracy in the group that used interactive visualizations over the group that used noninteractive visualizations. In tasks comparing results of different algorithms, a significant decrease in time was observed in using interactive visualizations over noninteractive visualizations.


Assuntos
Processamento Eletrônico de Dados , Ensaios de Triagem em Larga Escala , Algoritmos , Inquéritos e Questionários
20.
Assay Drug Dev Technol ; 14(8): 489-510, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27732064

RESUMO

The lysosomal cell death (LCD) pathway is a caspase 3-independent cell death pathway that has been suggested as a possible target for cancer therapy, making the development of sensitive and specific high-throughput (HT) assays to identify LCD inducers highly desirable. In this study, we report a two-step HT screening platform to reliably identify such molecules. First, using a robust HT primary screen based on propidium iodide uptake, we identified compounds that kill through nonapoptotic pathways. A phenotypic image-based assay using a galectin-3 (Gal-3) reporter was then used to further classify hits based on lysosomal permeabilization, a hallmark of LCD. The identification of permeabilized lysosomes in our image-based assay is not affected by changes in the lysosomal pH, thus resolving an important limitation in currently used methods. We have validated our platform in a screen by identifying 24 LCD inducers, some previously known to induce LCD. Although most LCD inducers were cationic amphiphilic drugs (CADs), we have also identified a non-CAD LCD inducer, which is of great interest in the field. Our data also gave new insights into the biology of LCD, suggesting that lysosomal accumulation and acid sphingomyelinase inhibition are not sufficient or necessary for the induction of LCD. Overall, our results demonstrate a robust HT platform to identify novel LCD inducers that will also be very useful for gaining deeper insights into the molecular mechanism of LCD induction.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Lisossomos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Indóis/farmacologia , Lisossomos/fisiologia , Células MCF-7 , Compostos de Espiro/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA