Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 822, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191885

RESUMO

A first irradiation platform capable of delivering 10 MV X-ray beams at ultra-high dose rates (UHDR) has been developed and characterized for FLASH radiobiological research at TRIUMF. Delivery of both UHDR (FLASH mode) and low dose-rate conventional (CONV mode) irradiations was demonstrated using a common source and experimental setup. Dose rates were calculated using film dosimetry and a non-intercepting beam monitoring device; mean values for a 100 µA pulse (peak) current were nominally 82.6 and 4.40 × 10-2 Gy/s for UHDR and CONV modes, respectively. The field size for which > 40 Gy/s could be achieved exceeded 1 cm down to a depth of 4.1 cm, suitable for total lung irradiations in mouse models. The calculated delivery metrics were used to inform subsequent pre-clinical treatments. Four groups of 6 healthy male C57Bl/6J mice were treated using thoracic irradiations to target doses of either 15 or 30 Gy using both FLASH and CONV modes. Administration of UHDR X-ray irradiation to healthy mouse models was demonstrated for the first time at the clinically-relevant beam energy of 10 MV.


Assuntos
Benchmarking , Radiometria , Masculino , Animais , Camundongos , Raios X , Radiografia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Phys Med Biol ; 67(10)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35299167

RESUMO

OBJECTIVE: To develop a bremsstrahlung target and megavoltage (MV) x-ray irradiation platform for ultrahigh dose-rate (UHDR) irradiation of small-animals on the Advanced Rare Isotope Laboratory (ARIEL) electron linac (e-linac) at TRIUMF. APPROACH: An electron-to-photon converter design for UHDR radiotherapy (RT) was centered around optimization of a tantalum-aluminum (Ta-Al) explosion-bonded target. Energy deposition within a homogeneous water-phantom and the target itself were evaluated using EGSnrc and FLUKA MC codes, respectively, for various target thicknesses (0.5-1.5 mm), beam energies (Ee-= 8, 10 MeV) and electron (Gaussian) beam sizes (2σ= 2-10 mm). Depth dose-rates in a 3D-printed mouse phantom were also calculated to infer the compatibility of the 10 MV dose distributions for FLASH-RT in small-animal models. Coupled thermo-mechanical FEA simulations in ANSYS were subsequently used to inform the stress-strain conditions and fatigue life of the target assembly. MAIN RESULTS: Dose-rates of up to 128 Gy s-1at the phantom surface, or 85 Gy s-1at 1 cm depth, were obtained for a 1 × 1 cm2field size, 1 mm thick Ta target and 7.5 cm source-to-surface distance using the FLASH-mode beam (Ee-= 10 MeV, 2σ= 5 mm,P = 1 kW); furthermore, removal of the collimation assembly and using a shorter (3.5 cm) SSD afforded dose-rates >600 Gy s-1, albeit at the expense of field conformality. Target temperatures were maintained below the tantalum, aluminum and cooling-water thresholds of 2000 °C, 300 °C and 100 °C, respectively, while the aluminum strain behavior remained everywhere elastic and helped ensure   the converter survives its prescribed 5 yr operational lifetime. SIGNIFICANCE: Effective design iteration, target cooling and failure mitigation have culminated in a robust target compatible with intensive transient (FLASH) and steady-state (diagnostic) applications. The ARIEL UHDR photon source will facilitate FLASH-RT experiments concerned with sub-second, pulsed or continuous beam irradiations at dose rates in excess of 40 Gy s-1.


Assuntos
Alumínio , Elétrons , Animais , Camundongos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Tantálio , Água , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA