Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 209(6): 1048-1058, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985788

RESUMO

In IgA vasculitis (IgAV) perivascular deposition of IgA1 immune complexes (IgA-ICs) is traditionally considered the fundamental trigger for polymorphonuclear neutrophil (PMN)-mediated damage. We propose that IgA-IC deposition, although mandatory, is not sufficient alone for IgAV. Serum IgA-IC levels and IgA-IC binding to PMNs were quantified in IgAV patients and controls. Activation of PMNs was evaluated by neutrophil extracellular trap (NET) release, adherence, and cytotoxicity assays and in a flow system to mirror conditions at postcapillary venules. In vitro results were related to findings in biopsies and a mouse vasculitis model. During acute IgAV flares we observed elevated serum levels of IgA-ICs and increased IgA-IC binding to circulating PMNs. This IgA-IC binding primed PMNs with consequent lowering of the threshold for NETosis, demonstrated by significantly higher release of NETs from PMNs activated in vitro and PMNs from IgAV patients with flares compared with surface IgA-negative PMNs after flares. Blocking of FcαRI abolished these effects, and complement was not essential. In the flow system, marked NETosis only occurred after PMNs had adhered to activated endothelial cells. IgA-IC binding enhanced this PMN tethering and consequent NET-mediated endothelial cell injury. Reflecting these in vitro findings, we visualized NETs in close proximity to endothelial cells and IgA-coated PMNs in tissue sections of IgAV patients. Inhibition of NET formation and knockout of myeloperoxidase in a murine model of IC vasculitis significantly reduced vessel damage in vivo. Binding of IgA-ICs during active IgAV primes PMNs and promotes vessel injury through increased adhesion of PMNs to the endothelium and enhanced NETosis.


Assuntos
Vasculite por IgA , Vasculite , Animais , Complexo Antígeno-Anticorpo/metabolismo , Células Endoteliais , Imunoglobulina A , Camundongos , Neutrófilos , Peroxidase/metabolismo
2.
Eur J Immunol ; 46(8): 1997-2007, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27159026

RESUMO

In patients with juvenile idiopathic arthritis (JIA), increased release of IFN-γ and GM-CSF in cells infiltrating synovial tissue can be a potent driver of monocyte activation. Given the fundamental role of monocyte activation in remodeling the early phases of inflammatory responses, here we analyze the GM-CSF/IFN-γ induced activity of human monocytes in such a situation in vitro and in vivo. Monocytes from healthy donors were isolated and stimulated with GM-CSF ± IFN-γ. Monocyte activation and death were analyzed by flow cytometry, immunofluorescence microscopy, ELISA, and qPCR. T-cell GM-CSF/IFN-γ expression and monocyte function were determined in synovial fluid and peripheral blood from 15 patients with active JIA and 21 healthy controls. Simultaneous treatment with GM-CSF and IFN-γ induces cell death of monocytes. This cell death is partly cathepsin B-associated and has morphological characteristics of necrosis. Monocytes responding to costimulation with strong proinflammatory activities are consequently eliminated. Monocytes surviving this form of hyperactivation retain normal cytokine production. Cathepsin B activity is increased in monocytes isolated from synovial fluid from patients with active arthritis. Our data suggest GM-CSF/IFN-γ induced cell death of monocytes as a novel mechanism to eliminate overactivated monocytes, thereby potentially balancing inflammation and autoimmunity in JIA.


Assuntos
Artrite Juvenil/imunologia , Morte Celular , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interferon gama/farmacologia , Monócitos/imunologia , Adolescente , Autoimunidade , Estudos de Casos e Controles , Catepsina B/metabolismo , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária , Masculino , Líquido Sinovial
3.
J Immunol ; 194(5): 2424-38, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25653427

RESUMO

Human and murine studies showed that GM-CSF exerts beneficial effects in intestinal inflammation. To explore whether GM-CSF mediates its effects via monocytes, we analyzed effects of GM-CSF on monocytes in vitro and assessed the immunomodulatory potential of GM-CSF-activated monocytes (GMaMs) in vivo. We used microarray technology and functional assays to characterize GMaMs in vitro and used a mouse model of colitis to study GMaM functions in vivo. GM-CSF activates monocytes to increase adherence, migration, chemotaxis, and oxidative burst in vitro, and primes monocyte response to secondary microbial stimuli. In addition, GMaMs accelerate epithelial healing in vitro. Most important, in a mouse model of experimental T cell-induced colitis, GMaMs show therapeutic activity and protect mice from colitis. This is accompanied by increased production of IL-4, IL-10, and IL-13, and decreased production of IFN-γ in lamina propria mononuclear cells in vivo. Confirming this finding, GMaMs attract T cells and shape their differentiation toward Th2 by upregulating IL-4, IL-10, and IL-13 in T cells in vitro. Beneficial effects of GM-CSF in Crohn's disease may possibly be mediated through reprogramming of monocytes to simultaneously improved bacterial clearance and induction of wound healing, as well as regulation of adaptive immunity to limit excessive inflammation.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Colite/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Intestino Grosso/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Transferência Adotiva , Animais , Adesão Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Regulação da Expressão Gênica , Humanos , Interferon gama/farmacologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/farmacologia , Intestino Grosso/imunologia , Intestino Grosso/patologia , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Explosão Respiratória/efeitos dos fármacos , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/transplante
4.
J Immunol ; 190(9): 4812-20, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23547114

RESUMO

CCL2, also referred to as MCP-1, is critically involved in directing the migration of blood monocytes to sites of inflammation. Consequently, excessive CCL2 secretion has been linked to many inflammatory diseases, whereas a lack of expression severely impairs immune responsiveness. We demonstrate that IκBζ, an atypical IκB family member and transcriptional coactivator required for the selective expression of a subset of NF-κB target genes, is a key activator of the Ccl2 gene. IκBζ-deficient macrophages exhibited impaired secretion of CCL2 when challenged with diverse inflammatory stimuli, such as LPS or peptidoglycan. These findings were reflected at the level of Ccl2 gene expression, which was tightly coupled to the presence of IκBζ. Moreover, mechanistic insights acquired by chromatin immunoprecipitation demonstrate that IκBζ is directly recruited to the proximal promoter region of the Ccl2 gene and is required for transcription-enhancing histone H3 at lysine-4 trimethylation. Finally, IκBζ-deficient mice showed significantly impaired CCL2 secretion and monocyte infiltration in an experimental model of peritonitis. Together, these findings suggest a distinguished role of IκBζ in mediating the targeted recruitment of monocytes in response to local inflammatory events.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcrição Gênica/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Células Cultivadas , Quimiocina CCL2/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Histonas/genética , Histonas/imunologia , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteínas Nucleares/imunologia , Peritonite/genética , Peritonite/imunologia , Peritonite/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Transcrição Gênica/imunologia
5.
PLoS Pathog ; 6(4): e1000871, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20442861

RESUMO

Experimental leishmaniasis is an excellent model system for analyzing Th1/Th2 differentiation. Resistance to Leishmania (L.) major depends on the development of a L. major specific Th1 response, while Th2 differentiation results in susceptibility. There is growing evidence that the microenvironment of the early affected tissue delivers the initial triggers for Th-cell differentiation. To analyze this we studied differential gene expression in infected skin of resistant and susceptible mice 16h after parasite inoculation. Employing microarray technology, bioinformatics, laser-microdissection and in-situ-hybridization we found that the epidermis was the major source of immunomodulatory mediators. This epidermal gene induction was significantly stronger in resistant mice especially for several genes known to promote Th1 differentiation (IL-12, IL-1beta, osteopontin, IL-4) and for IL-6. Expression of these cytokines was temporally restricted to the crucial time of Th1/2 differentiation. Moreover, we revealed a stronger epidermal up-regulation of IL-6 in the epidermis of resistant mice. Accordingly, early local neutralization of IL-4 in resistant mice resulted in a Th2 switch and mice with a selective IL-6 deficiency in non-hematopoietic cells showed a Th2 switch and dramatic deterioration of disease. Thus, our data indicate for the first time that epidermal cytokine expression is a decisive factor in the generation of protective Th1 immunity and contributes to the outcome of infection with this important human pathogen.


Assuntos
Diferenciação Celular/imunologia , Queratinócitos/imunologia , Leishmaniose Cutânea/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Interleucina-12/biossíntese , Interleucina-12/imunologia , Interleucina-1beta/biossíntese , Interleucina-4/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microdissecção , Análise de Sequência com Séries de Oligonucleotídeos , Osteopontina/biossíntese , Osteopontina/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/imunologia , Subpopulações de Linfócitos T/citologia , Células Th1/citologia , Células Th2/citologia , Células Th2/imunologia
6.
J Exp Med ; 198(2): 191-9, 2003 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12860932

RESUMO

Protective immunity against pathogens such as Leishmania major is mediated by interleukin (IL)-12-dependent Th1-immunity. We have shown previously that skin-dendritic cells (DCs) from both resistant C57BL/6 and susceptible BALB/c mice release IL-12 when infected with L. major, and infected BALB/c DCs effectively vaccinate against leishmaniasis. To determine if cytokines other than IL-12 might influence disease outcome, we surveyed DCs from both strains for production of a variety of cytokines. Skin-DCs produced significantly less IL-1alpha in response to lipopolysaccharide/interferon gamma or L. major when expanded from BALB/c as compared with C57BL/6 mice. In addition, IL-1alpha mRNA accumulation in lymph nodes of L. major-infected BALB/c mice was approximately 3-fold lower than that in C57BL/6 mice. Local injections of IL-1alpha during the first 3 d after infection led to dramatic, persistent reductions in lesion sizes. In L. major-infected BALB/c mice, IL-1alpha administration resulted in increased Th1- and strikingly decreased Th2-cytokine production. IL-1alpha and IL-12 treatments were similarly effective, and IL-1alpha efficacy was strictly IL-12 dependent. These data indicate that transient local administration of IL-1alpha acts in conjunction with IL-12 to influence Th-development in cutaneous leishmaniasis and prevents disease progression in susceptible BALB/c mice, perhaps by enhancing DC-induced Th1-education. Differential production of IL-1 by C57BL/6 and BALB/c mice may provide a partial explanation for the disparate outcomes of infection in these mouse strains.


Assuntos
Interleucina-1/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pele/imunologia , Células Th1/citologia
7.
J Am Acad Dermatol ; 61(4): 701-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19577329

RESUMO

Giant cell arteritis (GCA) is a systemic vasculitis associated with severe complications such as loss of vision and, rarely, scalp necrosis. We present a patient with GCA who had bilateral scalp necrosis and an erythrocyte sedimentation rate of only 21 mm after the first hour. Therapy with systemic steroids, which were slowly tapered over 1 year, led to secondary wound healing without recurrence. As there are no systematic reviews on the occurrence of scalp necrosis in patients with GCA, we performed a literature research and meta-analysis and discovered 78 cases published between 1946 and 2007. Analysis of the data revealed that GCA with scalp necrosis is associated with a higher incidence of vision loss (32%) and other visual defects (37.3%) than GCA without scalp necrosis (visual disturbances in up to 20%). GCA with scalp necrosis is also associated with an increased mortality (standard mortality ratio [SMR], 4.2) in contrast to GCA without scalp necrosis, which has no significantly higher mortality than age-matched controls (SMR 0.8-1.034). In patients with scalp necrosis, the diagnosis of GCA was made about 1 month later than in patients without scalp necrosis, and scalp necrosis was never reported to occur after onset of therapy with glucocorticoids. Thus, for reasons beyond potential loss of vision, physicians should be alert for symptoms of GCA as only timely diagnosis and immediate therapy may prevent serious complications and increased mortality.


Assuntos
Arterite de Células Gigantes/complicações , Arterite de Células Gigantes/patologia , Dermatoses do Couro Cabeludo/etiologia , Dermatoses do Couro Cabeludo/patologia , Idoso , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Angiografia Cerebral , Feminino , Arterite de Células Gigantes/diagnóstico por imagem , Humanos , Artéria Maxilar/diagnóstico por imagem , Artéria Maxilar/patologia , Necrose , Couro Cabeludo/patologia , Artérias Temporais/diagnóstico por imagem , Artérias Temporais/patologia
8.
Front Immunol ; 10: 2028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507614

RESUMO

Uncontrolled inflammation is a leading cause of many clinically relevant diseases. Current therapeutic strategies focus mainly on immunosuppression rather than on the mechanisms of inflammatory resolution. Glucocorticoids (GCs) are still the most widely used anti-inflammatory drugs. GCs affect most immune cells but there is growing evidence for cell type specific mechanisms. Different subtypes of monocytes and macrophages play a pivotal role both in generation as well as resolution of inflammation. Activation of these cells by microbial products or endogenous danger signals results in production of pro-inflammatory mediators and initiation of an inflammatory response. GCs efficiently inhibit these processes by down-regulating pro-inflammatory mediators from macrophages and monocytes. On the other hand, GCs act on "naïve" monocytes and macrophages and induce anti-inflammatory mediators and differentiation of anti-inflammatory phenotypes. GC-induced anti-inflammatory monocytes have an increased ability to migrate toward inflammatory stimuli. They remove endo- and exogenous danger signals by an increased phagocytic capacity, produce anti-inflammatory mediators and limit T-cell activation. Thus, GCs limit amplification of inflammation by repressing pro-inflammatory macrophage activation and additionally induce anti-inflammatory monocyte and macrophage populations actively promoting resolution of inflammation. Further investigation of these mechanisms should lead to the development of novel therapeutic strategies to modulate undesirable inflammation with fewer side effects via induction of inflammatory resolution rather than non-specific immunosuppression.


Assuntos
Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Imunomodulação/efeitos dos fármacos , Imunossupressores/farmacologia , Macrófagos/imunologia , Monócitos/imunologia , Apresentação de Antígeno/imunologia , Biomarcadores , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Imunidade Inata , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Infect Immun ; 76(9): 4241-50, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18625738

RESUMO

Lymph nodes (LNs) are important sentinel organs where antigen-presenting cells interact with T cells to induce adaptive immune responses. In cutaneous infection of mice with Leishmania major, resistance depends on the induction of a T-helper-cell-1 (Th1)-mediated cellular immune response in draining, peripheral LNs. We investigated whether draining, peripheral LNs are absolutely required for resistance against L. major infection. We investigated the course of experimental leishmaniasis in wild-type (wt) mice lacking peripheral LNs (pLNs), which we generated by in utero blockade of membrane-bound lymphotoxin, and in mice lacking pLNs or all LNs due to genetic deletion of lymphotoxin ligands or receptors. wt mice of the resistant C57BL/6 strain without local skin-draining LNs were still able to generate specific T-cell responses, but this yielded Th2 cells. This switch to a Th2 response resulted in severe systemic infection. We also confirmed these results with mice lacking pLNs due to genetic depletion of lymphotoxin-beta. The complete absence of LNs due to a genetic depletion of the lymphotoxin-beta receptor also resulted in a marked deterioration of disease and a Th2 response. Thus, in the absence of pLNs, an L. major-specific Th2 response is induced in the remaining secondary lymphoid organs, such as the spleen and non-skin-draining LNs. This indicates a critical requirement for pLNs to induce protective Th1 immunity and suggests that whether Th1 or Th2 priming to the same antigen occurs depends on the site of the primary antigen recognition.


Assuntos
Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Linfonodos/imunologia , Pele/imunologia , Células Th2/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Suscetibilidade a Doenças/imunologia , Feminino , Pé/parasitologia , Humanos , Interferon gama/metabolismo , Interleucina-4/metabolismo , Linfonodos/anormalidades , Receptor beta de Linfotoxina/deficiência , Linfotoxina-alfa/antagonistas & inibidores , Linfotoxina-beta/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença
10.
J Invest Dermatol ; 131(1): 125-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20882039

RESUMO

Staphylococcus aureus is the leading cause of bacterial skin infection. Once it overcomes the epithelial barrier, it either remains locally controlled or spreads in the dermis causing soft tissue infection. These different courses depend not only on its virulence factors, but also on the immune response of the infected individual. The goal of this study was to identify host factors that influence different outcomes. We, therefore, established comparative analysis of subcutaneous footpad infection with S. aureus (SH1000) in different inbred mouse strains. We found that C57BL/6 mice are more susceptible than BALB/c and DBA/2 mice, reflected by significantly higher footpad swelling and bacterial load, as well as increased dissemination of bacteria into inguinal lymph nodes and kidneys. This susceptibility was associated with lower influx of polymorphonuclear leukocytes (PMNs), but higher secretion of CXCL-2. Remarkably, resistance correlated with S. aureus-specific Th2-cell response in BALB/c and DBA/2 mice, whereas susceptible C57BL/6 mice generated a Th1-cell response. As Th1 cells are able to induce release of CXCL-2, and as CXCL-2 is able to increase the survival of S. aureus within PMNs, interactions between PMNs and Th1 or Th2 cells need to be considered as important mechanisms of resistance in murine soft tissue infection with S. aureus.


Assuntos
Neutrófilos/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Gordura Subcutânea/microbiologia , Células Th2/microbiologia , Doença Aguda , Animais , Quimiocina CXCL1/imunologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/imunologia , Quimiocina CXCL2/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neutrófilos/imunologia , Especificidade da Espécie , Gordura Subcutânea/imunologia , Células Th1/imunologia , Células Th1/microbiologia , Células Th2/imunologia
11.
J Leukoc Biol ; 86(3): 557-66, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19451397

RESUMO

The innate immune system is crucial for initiation and amplification of inflammatory responses. During this process, phagocytes are activated by PAMPs that are recognized by PRRs. Phagocytes are also activated by endogenous danger signals called alarmins or DAMPs via partly specific, partly common PRRs. Two members of the S100 protein family, S100A8 and S100A9, have been identified recently as important endogenous DAMPs. The complex of S100A8 and S100A9 (also called calprotectin) is actively secreted during the stress response of phagocytes. The association of inflammation and S100A8/S100A9 was discovered more than 20 years ago, but only now are the molecular mechanisms involved in danger signaling by extracellular S100A8/S100A9 beginning to emerge. Taking advantage of mice lacking the functional S100A8/S100A9 complex, these molecules have been identified as endogenous activators of TLR4 and have been shown to promote lethal, endotoxin-induced shock. Importantly, S100A8/S100A9 is not only involved in promoting the inflammatory response in infections but was also identified as a potent amplifier of inflammation in autoimmunity as well as in cancer development and tumor spread. This proinflammatory action of S100A8/S100A9 involves autocrine and paracrine mechanisms in phagocytes, endothelium, and other cells. As a net result, extravasation of leukocytes into inflamed tissues and their subsequent activation are increased. Thus, S100A8/S100A9 plays a pivotal role during amplification of inflammation and represents a promising new therapeutic target.


Assuntos
Autoimunidade/imunologia , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Infecções/metabolismo , Neoplasias/imunologia , Animais , Humanos , Receptor 4 Toll-Like/agonistas
12.
J Invest Dermatol ; 127(2): 447-54, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17008881

RESUMO

How neutrophils (polymorphonuclear neutrophils, PMNs) damage vessels in leukocytoclastic vasculitis (LcV) mediated by immune complexes (ICs) is unclear. If degradative enzymes and oxygen radicals are released from PMNs while adhering to the inner side of the vessel wall, they could be washed away by the blood stream or neutralized by serum protease inhibitors. We investigated if in LcV PMNs could damage vessels from the tissue side after transmigration. We used CD18-deficient (CD18-/-) mice because the absence of CD18 excludes transmigration of PMNs. When eliciting the Arthus reaction in ears of CD18-/- mice, deposition of ICs was not sufficient to recruit PMNs or to induce IC-mediated LcV. Injection of PMNs intradermally in CD18-/- mice allowed us to investigate if bypassing diapedesis and placing PMNs exclusively on the abluminal side leads to vascular destruction. We found that injected PMNs gathered around perivascular ICs, but did not cause vessel damage. Only intravenous injection of wild-type PMNs could re-establish the Arthus reaction in CD18-/- mice. Thus, PMNs cause vessel damage during diapedesis from the luminal side, but not from the perivascular space. We suggest that in order to shield the cytotoxic products from the blood stream, ICs induce particularly tight interactions between them, PMNs and endothelial cells.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Vasos Sanguíneos/patologia , Antígenos CD18/metabolismo , Infiltração de Neutrófilos , Vasculite Leucocitoclástica Cutânea/imunologia , Vasculite Leucocitoclástica Cutânea/patologia , Animais , Reação de Arthus/imunologia , Reação de Arthus/patologia , Antígenos CD18/genética , Antígenos CD18/imunologia , Adesão Celular , Degranulação Celular/imunologia , Camundongos , Camundongos Knockout/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Explosão Respiratória
13.
J Immunol ; 178(11): 7251-8, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17513774

RESUMO

Protection against Leishmania major in resistant C57BL/6 mice is mediated by Th1 cells, whereas susceptibility in BALB/c mice is the result of Th2 development. IL-12 release by L. major-infected dendritic cells (DC) is critically involved in differentiation of Th1 cells. Previously, we reported that strain differences in the production of DC-derived factors, e.g., IL-1alphabeta, are in part responsible for disparate disease outcome. In the present study, we analyzed the release of IL-12 from DC in more detail. Stimulated DC from C57BL/6 and BALB/c mice released comparable amounts of IL-12p40 and p70. In the absence of IL-4, BALB/c DC produced significantly more IL-12p40 than C57BL/6 DC. Detailed analyses by Western blot and ELISA revealed that one-tenth of IL-12p40 detected in DC supernatants was released as the IL-12 antagonist IL-12p40 homodimer (IL-12p80). BALB/c DC released approximately 2-fold more IL-12p80 than C57BL/6 DC both in vitro and in vivo. Local injection of IL-12p80 during the first 3 days after infection resulted in increased lesion volumes for several weeks in both L. major-infected BALB/c or C57BL/6 mice, in higher lesional parasite burdens, and decreased Th1-cytokine production. Finally, IL-12p40-transgenic C57BL/6 mice characterized by overexpression of p40 showed increased levels of serum IL-12p80 and enhanced disease susceptibility. Thus, in addition to IL-1alphabeta, strain-dependent differences in the release of other DC-derived factors such as IL-12p80 may influence genetically determined disease outcome.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Predisposição Genética para Doença , Subunidade p40 da Interleucina-12/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Animais , Células Cultivadas , Dimerização , Imunidade Inata/genética , Interleucina-12/antagonistas & inibidores , Interleucina-12/sangue , Interleucina-12/metabolismo , Interleucina-12/fisiologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-4/fisiologia , Leishmania major/imunologia , Leishmaniose Cutânea/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA