Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Med Genet A ; 173(2): 435-443, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862890

RESUMO

Loss-of-function mutations and deletions of the SOX2 gene are known to cause uni- and bilateral anophthalmia and microphthalmia as well as related disorders such as anophthalmia-esophageal-genital syndrome. Thus, anophthalmia/microphthalmia is the primary indication for targeted, "phenotype first" analyses of SOX2. However, SOX2 mutations are also associated with a wide range of non-ocular abnormalities, such as postnatal growth retardation, structural brain anomalies, hypogenitalism, and developmental delay. The present report describes three patients without anophthalmia/microphthalmia and loss-of-function mutations or microdeletions of SOX2 who had been investigated in a "genotype first" manner due to intellectual disability/developmental delay using whole exome sequencing or chromosomal microarray analyses. This result prompted us to perform SOX2 Sanger sequencing in 192 developmental delay/intellectual disability patients without anophthalmia or microphthalmia. No additional SOX2 loss-of-function mutations were detected in this cohort, showing that SOX2 is clearly not a major cause of intellectual disability without anophthalmia/microphthalmia. In our three patients and four further, reported "genotype first" SOX2 microdeletion patients, anophthalmia/microphthalmia was present in less than half of the patients. Thus, SOX2 is another example of a gene whose clinical spectrum is broadened by the generation of "genotype first" findings using hypothesis-free, genome-wide methods. © 2016 Wiley Periodicals, Inc.


Assuntos
Estudos de Associação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Fenótipo , Mutação Puntual , Fatores de Transcrição SOXB1/genética , Deleção de Sequência , Encéfalo/anormalidades , Pré-Escolar , Hibridização Genômica Comparativa , Exoma , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Fácies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Polimorfismo de Nucleotídeo Único , Sistema de Registros
2.
Mol Cytogenet ; 8: 72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26421060

RESUMO

BACKGROUND: Most microdeletions involving chromosome sub-bands 9q33.3-9q34.11 to this point have been detected by analyses focused on STXBP1, a gene known to cause early infantile epileptic encephalopathy 4 and other seizure phenotypes. Loss-of-function mutations of STXBP1 have also been identified in some patients with intellectual disability without epilepsy. Consequently, STXBP1 is widely assumed to be the gene causing both seizures and intellectual disability in patients with 9q33.3-q34.11 microdeletions. RESULTS: We report five patients with overlapping microdeletions of chromosome 9q33.3-q34.11, four of them previously unreported. Their common clinical features include intellectual disability, psychomotor developmental delay with delayed or absent speech, muscular hypotonia, and strabismus. Microcephaly and short stature are each present in four of the patients. Two of the patients had seizures. De novo deletions range from 1.23 to 4.13 Mb, whereas the smallest deletion of 432 kb in patient 3 was inherited from her mother who is reported to have mild intellectual disability. The smallest region of overlap (SRO) of these deletions in 9q33.3 does not encompass STXBP1, but includes two genes that have not been previously associated with disease, RALGPS1 and GARNL3. Sequencing of the two SRO genes RALGPS1 and GARNL3 in at least 156 unrelated patients with mild to severe idiopathic intellectual disability detected no causative mutations. Gene expression analyses in our patients demonstrated significantly reduced expression levels of GARNL3, RALGPS1 and STXBP1 only in patients with deletions of the corresponding genes. Thus, reduced expression of STXBP1 was ruled out as a cause for seizures in our patient whose deletion did not encompass STXBP1. CONCLUSIONS: We suggest that microdeletions of this region on chromosome 9q cause a clinical spectrum including intellectual disability, developmental delay especially concerning speech, microcephaly, short stature, mild dysmorphisms, strabismus, and seizures of incomplete penetrance, and may constitute a new contiguous gene deletion syndrome which cannot completely be explained by deletion of STXBP1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA