Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577286

RESUMO

The optimization of the Beetle readout ASIC and the performance of the software for the signal processing based on machine learning methods are presented. The Beetle readout chip was developed for the LHCb (Large Hadron Collider beauty) tracking detectors and was used in the VELO (Vertex Locator) during Run 1 and 2 of LHC data taking. The VELO, surrounding the LHC beam crossing region, was a leading part of the LHCb tracking system. The Beetle chip was used to read out the signal from silicon microstrips, integrating and amplifying it. The studies presented in this paper cover the optimization of its electronic configuration to achieve the lower power consumption footprint and the lower operational temperature of the sensors, while maintaining a good condition of the analogue response of the whole chip. The studies have shown that optimizing the operational temperature is possible and can be beneficial when the detector is highly irradiated. Even a single degree drop in silicon temperature can result in a significant reduction in the leakage current. Similar studies are being performed for the future silicon tracker, the Upstream Tracker (UT), which will start operating at LHC in 2021. It is expected that the inner part of the UT detector will suffer radiation damage similar to the most irradiated VELO sensors in Run 2. In the course of analysis we also developed a general approach for the pulse shape reconstruction using an ANN approach. This technique can be reused in case of any type of front-end readout chip.


Assuntos
Besouros , Animais , Simulação por Computador , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Silício
2.
Proc Natl Acad Sci U S A ; 105(49): 19241-6, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19033470

RESUMO

The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Phi value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.


Assuntos
Modelos Químicos , Proteínas do Tecido Nervoso/química , Domínios PDZ , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Simulação por Computador , Mutagênese , Proteínas do Tecido Nervoso/genética , Dobramento de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Termodinâmica
3.
Dalton Trans ; 44(4): 1816-28, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25473816

RESUMO

Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO2(-), chlorate, ClO3(-), and perchlorate, ClO4(-). In addition, the structures of the hydrated hypochlorite, ClO(-), bromate, BrO3(-), iodate, IO3(-) and metaperiodate, IO4(-), ions have been determined in aqueous solution by means of LAXS. The structures of the bromate, metaperiodate, and orthoperiodate, H2IO6(3-), ions have been determined by EXAFS as solid sodium salts and in aqueous solution as well. The results show clearly that the only form of periodate present in aqueous solution is metaperiodate. The Cl-O bond distances in the hydrated oxo chloro anions as determined by LAXS and obtained in the QMCF MD simulations are in excellent agreement, being 0.01-0.02 Å longer than in solid anhydrous salts due to hydration through hydrogen bonding to water molecules. The oxo halo anions, all with unit negative charge, have low charge density making them typical structure breakers, thus the hydrogen bonds formed to the hydrating water molecules are weaker and more short-lived than those between water molecules in pure water. The water exchange mechanism of the oxo chloro anions resembles those of the oxo sulfur anions with a direct exchange at the oxygen atoms for perchlorate and sulfate. The water exchange rate for the perchlorate ion is significantly faster, τ0.5 = 1.4 ps, compared to the hydrated sulfate ion and pure water, τ0.5 = 2.6 and 1.7 ps, respectively. The angular radial distribution functions show that the chlorate and sulfite ions have a more complex water exchange mechanism. As the chlorite and chlorate ions are more weakly hydrated than the sulfite ion the spatial occupancy is less well-defined and it is not possible to follow any well-defined migration pattern as it is difficult to distinguish between hydrating water molecules and bulk water in the region close to the ions.


Assuntos
Cloratos/química , Cloretos/química , Percloratos/química , Água/química , Bromatos/química , Ácido Hipocloroso/química , Iodatos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Ácido Periódico/química , Soluções , Espectroscopia por Absorção de Raios X
4.
Dalton Trans ; 43(17): 6315-21, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24492478

RESUMO

The structure and hydrogen bonding of the hydrated selenite, SeO3(2-), and selenate, SeO4(2-), ions have been studied in aqueous solution by large angle X-ray scattering (LAXS), EXAFS and double difference infrared (DDIR) spectroscopy. The mean Se-O bond distances are 1.709(2) and 1.657(2) Å, respectively, as determined by LAXS, and 1.701(3) and 1.643(3) Å by EXAFS. These bond distances are slightly longer than the mean distances found in the solid state, 1.691 and 1.634 Å, respectively. The structures of HSeO3(-), H2SeO3 and HSeO4(-) in aqueous solution have been determined by EXAFS giving the same Se-O bond distances as for the selenite and selenate ions, respectively. The mean Se···O(w) distance to the water molecules hydrogen binding to selenite oxygens is 3.87(2) Å, and it is 4.36(8) Å to those clustered outside the lone electron-pair. The selenate ion has a symmetric hydration shell with only one Se···O(w) distance, 3.94(2) Å. The mean Se-O···O(w) angle in the hydrated selenite ion is 114.5°, and the large temperature factor of the Se···O(w) distance strongly indicates equilibrium between two and three water molecules hydrogen bound to the selenite oxygens. The mean Se-O···O(w) angle in the hydrated selenate ion is 120° which strongly indicates that two water molecules hydrogen bind to the selenate oxygens. The DDIR spectra show peaks for the affected water bound to the selenite and selenate ions at 2491 ± 2 and 2480 ± 39 cm(-1), respectively, compared to 2509 cm(-1) in pure water. This shows that the selenite and selenate ions shall be regarded as weak structure makers.

5.
Dalton Trans ; 43(33): 12711-20, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25010434

RESUMO

Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) to study the structure and dynamics of the hydrated thiosulfate ion, S2O3(2-), in aqueous solution. The S-O and SC-ST bond distances have been determined to be 1.479(5) and 2.020(6) Å by LAXS and to be 1.478 and 2.017 Å by QMCF MD simulations, which are slightly longer than the mean values found in the solid state, 1.467 and 2.002 Å, respectively. This is due to the hydrogen bonds formed at hydration. The water dynamics show that water molecules are exchanged at the hydrated oxygen and sulfur atoms, and that the water exchange is ca. 50% faster at the sulfur atom than at the oxygen atoms with mean residence times, τ0.5, of 2.4 and 3.6 ps, respectively. From this point of view the water exchange dynamics mechanism resembles the sulfate ion, while it is significantly different from the sulfite ion. This shows that the lone electron-pair in the sulfite ion has a much larger impact on the water exchange dynamics than a substitution of an oxygen atom for a sulfur one. The LAXS data did give mean SCOaq1 and SCOaq2 distances of 3.66(2) and 4.36(10) Å, respectively, and SC-Othio and OthioOaq1, SC-ST and STOaq2 distances of 1.479(5), 2.845(10), 2.020(6) and 3.24(5) Å, respectively, giving SC-OthioOaq1 and SC-STOaq2 angles close to 110°, strongly indicating a tetrahedral geometry around the terminal thiosulfate sulfur and the oxygens, and thereby, three water molecules are hydrogen bound to each of them. The hydrogen bonds between thiosulfate oxygens and the hydrating water molecules are stronger and with longer mean residence times than those between water molecules in the aqueous bulk, while the opposite is true for the hydrogen bonds between the terminal thiosulfate sulfur and the hydrating water molecules. The hydration of all oxo sulfur ions is discussed using the detailed observations for the sulfate, thiosulfate and sulfite ions, and the structure of the hydrated peroxodisulfate ion, S2O8(2-), in aqueous solution has been determined by means of LAXS to support the general observations. The mean S-O bond distances are 1.448(2) and 1.675(5) Å to the oxo and peroxo oxygens, respectively.

6.
Dalton Trans ; 41(17): 5209-16, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22415245

RESUMO

Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism has been applied in conjunction to experimental large angle X-ray scattering to study the structure and dynamics of the hydrated sulfite ion in aqueous solution. The results show that there is a considerable effect of the lone electron-pair on sulfur concerning structure and dynamics in comparison with the sulfate ion with higher oxidation number and symmetry of the hydration shell. The S-O bond distance in the hydrated sulfite ion has been determined to 1.53(1) Å by both methods. The hydrogen bonds between the three water molecules bound to each sulfite oxygen are only slightly stronger than those in bulk water. The sulfite ion can therefore be regarded as a weak structure maker. The water exchange rate is somewhat slower for the sulfite ion than for the sulfate ion, τ(0.5) = 3.2 and 2.6 ps, respectively. An even more striking observation in the angular radial distribution (ARD) functions is that the for sulfite ion the water exchange takes place in close vicinity of the lone electron-pair directed at its sides, while in principle no water exchange did take place of the water molecules hydrogen bound to sulfite oxygens during the simulation time. This is also confirmed when detailed pathway analysis is conducted. The simulation showed that the water molecules hydrogen bound to the sulfite oxygens can move inside the hydration shell to the area outside the lone electron-pair and there be exchanged. On the other hand, for the hydrated sulfate ion in aqueous solution one can clearly see from the ARD that the distribution of exchange events is symmetrical around the entire hydration sphere.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Sulfitos/química , Água/química , Difração de Raios X , Conformação Molecular , Soluções
7.
J Biol Chem ; 280(41): 34805-12, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16049001

RESUMO

PDZ domains are protein adapter modules present in a few hundred human proteins. They play important roles in scaffolding and signal transduction. PDZ domains usually bind to the C termini of their target proteins. To assess the binding mechanism of this interaction we have performed the first in-solution kinetic study for PDZ domains and peptides corresponding to target ligands. Both PDZ3 from postsynaptic density protein 95 and PDZ2 from protein tyrosine phosphatase L1 bind their respective target peptides through an apparent A + B --> A.B mechanism without rate-limiting conformational changes. But a mutant with a fluorescent probe (Trp) outside of the binding pocket suggests that slight changes in the structure take place upon binding in protein tyrosine phosphatase-L1 PDZ2. For PDZ3 from postsynaptic density protein 95 the pH dependence of the binding reaction is consistent with a one-step mechanism with one titratable group. The salt dependence of the interaction shows that the formation of electrostatic interactions is rate-limiting for the association reaction but not for dissociation of the complex.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Proteínas Tirosina Fosfatases/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Complementar/metabolismo , Proteína 4 Homóloga a Disks-Large , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Íons , Cinética , Ligantes , Modelos Moleculares , Mutação , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 13 , Espectrofotometria , Eletricidade Estática , Temperatura , Termodinâmica , Fatores de Tempo , Triptofano/química , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA