Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153174

RESUMO

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Software , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Homozigoto , Doenças Raras/genética
2.
Am J Med Genet A ; : e63785, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860472

RESUMO

Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC types 1 and 2) are rare spondylo-epi-metaphyseal dysplasias with identical radiological and clinical findings. DMC and SMC type 1 are allelic disorders caused by homozygous or compound heterozygous variants in DYM, while biallelic causative variants in RAB33B lead to SMC type 2. The terminology "skeletal golgipathies" has been recently used to describe these conditions, highlighting the pivotal role of these two genes in the organization and intracellular trafficking of the Golgi apparatus. In this study, we investigated 17 affected individuals (8 males, 9 females) from 10 unrelated consanguineous families, 10 diagnosed with DMC and seven with SMC type 2. The mean age at diagnosis was 9.61 ± 9.72 years, ranging from 20 months to 34 years, and the average height at diagnosis was 92.85 ± 15.50 cm. All patients exhibited variable degrees of short trunk with a barrel chest, protruding abdomen, hyperlordosis, and decreased joint mobility. A total of nine different biallelic variants were identified, with six being located in the DYM gene and the remaining three detected in RAB33B. Notably, five variants were classified as novel, four in the DYM gene and one in the RAB33B gene. This study aims to comprehensively assess clinical, radiological, and molecular findings along with the long-term follow-up findings in 17 patients with DMC and SMC type 2. Our results suggest that clinical symptoms of the disorder typically appear from infancy to early childhood. The central notches of the vertebral bodies were identified as early as 20 months and tended to become rectangular, particularly around 15 years of age. Pseudoepiphysis was observed in five patients; we believe this finding should be taken into consideration when evaluating hand radiographs in clinical assessments. Furthermore, our research contributes to an enhanced understanding of clinical and molecular aspects in these rare "skeletal golgipathies," expanding the mutational spectrum and offering insights into long-term disease outcomes.

3.
J Med Genet ; 59(4): 377-384, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33737400

RESUMO

INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of ß-galactosidase (ß-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management.


Assuntos
Gangliosidose GM1 , Mucopolissacaridose IV , Feminino , Gangliosídeo G(M1) , Gangliosidose GM1/genética , Humanos , Mucopolissacaridose IV/genética , Mutação , Gravidez , beta-Galactosidase/genética
4.
Am J Hum Genet ; 105(1): 132-150, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31230720

RESUMO

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.


Assuntos
Artrogripose/genética , Artrogripose/patologia , Variações do Número de Cópias de DNA , Marcadores Genéticos , Genômica/métodos , Herança Multifatorial/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Conectina/genética , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Mosaicismo , Linhagem , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do Exoma , Adulto Jovem
6.
Mol Vis ; 28: 57-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693420

RESUMO

Purpose: To investigate the molecular basis of recessively inherited congenital cataract, microcornea, and corneal opacification with or without coloboma and microphthalmia in two consanguineous families. Methods: Conventional autozygosity mapping was performed using single nucleotide polymorphism (SNP) microarrays. Whole-exome sequencing was completed on genomic DNA from one affected member of each family. Exome sequence data were also used for homozygosity mapping and copy number variation analysis. PCR and Sanger sequencing were used to confirm the identification of mutations and to screen further patients. Evolutionary conservation of protein sequences was assessed using CLUSTALW, and protein structures were modeled using PyMol. Results: In family MEP68, a novel homozygous nucleotide substitution in SIX6 was found, c.547G>C, that converts the evolutionarily conserved aspartic acid residue at the 183rd amino acid in the protein to a histidine, p.(Asp183His). This residue mapped to the third helix of the DNA-binding homeobox domain in SIX6, which interacts with the major groove of double-stranded DNA. This interaction is likely to be disrupted by the mutation. In family F1332, a novel homozygous 1034 bp deletion that encompasses the first exon of SIX6 was identified, chr14:g.60975890_60976923del. Both mutations segregated with the disease phenotype as expected for a recessive condition and were absent from publicly available variant databases. Conclusions: Our findings expand the mutation spectrum in this form of inherited eye disease and confirm that homozygous human SIX6 mutations cause a developmental spectrum of ocular phenotypes that includes not only the previously described features of microphthalmia, coloboma, and congenital cataract but also corneal abnormalities.


Assuntos
Catarata , Coloboma , Doenças da Córnea , Anormalidades do Olho , Microftalmia , Catarata/congênito , Catarata/genética , Coloboma/genética , Doenças da Córnea/genética , DNA/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Anormalidades do Olho/genética , Proteínas de Homeodomínio/genética , Humanos , Microftalmia/genética , Mutação , Linhagem , Fenótipo , Transativadores/genética
7.
Clin Genet ; 101(5-6): 559-564, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218564

RESUMO

Bloom syndrome (BS) is an autosomal recessive disorder with characteristic clinical features of primary microcephaly, growth deficiency, cancer predisposition, and immunodeficiency. Here, we report the clinical and molecular findings of eight patients from six families diagnosed with BS. We identified causative pathogenic variants in all families including three different variants in BLM and one variant in RMI1. The homozygous c.581_582delTT;p.Phe194* and c.3164G>C;p.Cys1055Ser variants in BLM have already been reported in BS patients, while the c.572_573delGA;p.Arg191Lysfs*4 variant is novel. Additionally, we present the detailed clinical characteristics of two cases with BS in which we previously identified the biallelic loss-of-function variant c.1255_1259delAAGAA;p.Lys419Leufs*5 in RMI1. All BS patients had primary microcephaly, intrauterine growth delay, and short stature, presenting the phenotypic hallmarks of BS. However, skin lesions and upper airway infections were observed only in some of the patients. Overall, patients with pathogenic BLM variants had a more severe BS phenotype compared to patients carrying the pathogenic variants in RMI1, especially in terms of immunodeficiency, which should be considered as one of the most important phenotypic characteristics of BS.


Assuntos
Síndrome de Bloom , Microcefalia , Síndrome de Bloom/genética , Proteínas de Ligação a DNA/genética , Genótipo , Humanos , Microcefalia/genética , Fenótipo , RecQ Helicases/genética
8.
Am J Hum Genet ; 103(1): 115-124, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29887215

RESUMO

MYF5 is member of the Myc-like basic helix-loop-helix transcription factor family and, in cooperation with other myogenic regulatory factors MYOD and MYF5, is a key regulator of early stages of myogenesis. Here, we report three consanguineous families with biallelic homozygous loss-of-function mutations in MYF5 who define a clinical disorder characterized by congenital ophthalmoplegia with scoliosis and vertebral and rib anomalies. The clinical phenotype overlaps strikingly with that reported in several Myf5 knockout mouse models. Affected members of two families share a haploidentical region that contains a homozygous 10 bp frameshift mutation in exon 1 of MYF5 (c.23_32delAGTTCTCACC [p.Gln8Leufs∗86]) predicted to undergo nonsense-mediated decay. Affected members of the third family harbor a homozygous missense change in exon 1 of MYF5 (c.283C>T [p.Arg95Cys]). Using in vitro assays, we show that this missense mutation acts as a loss-of-function allele by impairing MYF5 DNA binding and nuclear localization. We performed whole-genome sequencing in one affected individual with the frameshift mutation and did not identify additional rare variants in the haploidentical region that might account for differences in severity among the families. These data support the direct role of MYF5 in rib, spine, and extraocular muscle formation in humans.


Assuntos
Mutação/genética , Fator Regulador Miogênico 5/genética , Oftalmoplegia/genética , Costelas/anormalidades , Coluna Vertebral/anormalidades , Alelos , Sequência de Aminoácidos , Canal Anal/anormalidades , Animais , Proteínas de Ligação a DNA/genética , Esôfago/anormalidades , Éxons/genética , Feminino , Cardiopatias Congênitas , Humanos , Rim/anormalidades , Deformidades Congênitas dos Membros , Masculino , Camundongos Knockout , Proteína MyoD/genética , Fenótipo , Alinhamento de Sequência , Traqueia/anormalidades , Sequenciamento Completo do Genoma/métodos
9.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057030

RESUMO

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

10.
Am J Med Genet A ; 185(8): 2325-2334, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33951304

RESUMO

Warburg-Micro syndrome (WARBM) is a rare autosomal recessively inherited neuro-ophthalmologic syndrome. Although WARBM shows genetic heterogeneity, the pathogenic variants in RAB3GAP1 were the most common cause of WARBM. In this study, we aimed to evaluate the detailed clinical and dysmorphic features of seven WARBM1 patients and overview the variant spectrum of RAB3GAP1 in comparison with the literature who were referred due to congenital cataracts. A previously reported homozygous variant (c.2187_2188delGAinsCT) was identified in three of these patients, while the other four had three novel variants (c.251_258delAGAA, c.2606+1G>A, and c.2861_2862dupGC). Congenital cataract and corpus callosum hypo/agenesia are pathognomonic for WARBM, which could be distinguished from other similar syndromes with additional typical dysmorphic facial features. Although there is no known phenotype and genotype correlation in any type of WARBM, RAB3GAP1 gene analysis should be previously requested as the first step of genetic diagnosis in clinically suspicious patients when it is not possible to request a multi-gene panel.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Catarata/congênito , Catarata/diagnóstico , Catarata/genética , Córnea/anormalidades , Estudos de Associação Genética , Predisposição Genética para Doença , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Alelos , Catarata/terapia , Pré-Escolar , Técnicas de Diagnóstico Oftalmológico , Fácies , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mutação , Fenótipo , Proteínas rab3 de Ligação ao GTP/genética
11.
Hum Mutat ; 39(9): 1226-1237, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29897170

RESUMO

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.


Assuntos
Anormalidades Múltiplas/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Fatores de Transcrição NFI/genética , Síndrome de Sotos/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/fisiopatologia , Criança , Pré-Escolar , Deleção Cromossômica , Hipotireoidismo Congênito/fisiopatologia , Anormalidades Craniofaciais/fisiopatologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Éxons/genética , Feminino , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Megalencefalia/genética , Megalencefalia/fisiopatologia , Mutação de Sentido Incorreto/genética , Fenótipo , Displasia Septo-Óptica/genética , Displasia Septo-Óptica/fisiopatologia , Síndrome de Sotos/fisiopatologia , Adulto Jovem
12.
J Clin Immunol ; 38(4): 494-502, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29770900

RESUMO

PURPOSE: Poikiloderma with neutropenia (PN) is a genodermatosis currently described in 77 patients, all presenting with early-onset poikiloderma, neutropenia, and several additional signs. Biallelic loss-of-function mutations in USB1 gene are detected in all molecularly tested patients but genotype-phenotype correlation remains elusive. Cancer predisposition is recognized among PN features and pathogenic variants found in patients who developed early in life myelodysplasia (n = 12), acute myeloid leukemia (n = 2), and squamous cell carcinoma (n = 2) should be kept into account in management and follow-up of novel patients. This will hopefully allow achieving data clustered on specific mutations relevant to oncological surveillance of the carrier patients. METHODS: We describe the clinical features of three unreported PN patients and characterize their USB1 pathogenic variants by transcript analysis to get insights into the effect on the overall phenotype and disease evolution. RESULTS: A Turkish boy is homozygous for the c.531delA deletion, a recurrent mutation in Turkey; an adult Italian male is compound heterozygous for two nonsense mutations, c.243G>A and c.541C>T, while an Italian boy is homozygous for the splicing c.683_693+1del variant. The identified mutations have already been reported in PN patients who developed hematologic or skin cancer. Aberrant mRNAs of all four mutated alleles could be identified confirming that transcripts of USB1 main isoform either carrying stop codons or mis-spliced may at least partially escape nonsense-mediated decay. CONCLUSIONS: Our study addresses the need of gathering insights on genotype-phenotype correlations in newly described PN patients, by transcript analysis and information on disease evolution of reported patients with the same pathogenic variants.


Assuntos
Regulação da Expressão Gênica , Predisposição Genética para Doença , Mutação , Neutropenia/diagnóstico , Neutropenia/genética , Anormalidades da Pele/diagnóstico , Anormalidades da Pele/genética , Transcriptoma , Adulto , Alelos , Biomarcadores Tumorais , Biópsia , Medula Óssea/patologia , Criança , Análise Mutacional de DNA , Progressão da Doença , Genótipo , Humanos , Lactente , Masculino , Linhagem , Fenótipo
13.
J Hum Genet ; 63(6): 769-774, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29568001

RESUMO

Dysosteosclerosis (DOS) is a form of sclerosing bone disease characterized by irregular osteosclerosis and platyspondyly. Its mode of inheritance is autosomal recessive. SLC29A3 mutations have been reported as the causal gene in two DOS families, however, genetic heterogeneity has been suggested. By whole-exome sequencing in a Turkish patient with DOS, we found a novel splice-site mutation in TNFRSF11A. TNFRSF11A mutations have previously been reported in two autosomal dominant diseases (osteolysis, familial expansile and Paget disease of bone 2, early-onset) and an autosomal recessive disease (osteopetrosis, autosomal recessive 7). The biallelic mutation, c.616+3A>G, identified in our study was located in the splice donor site of intron 6 of TNFRSF11A. Exon trapping assay indicated the mutation caused skipping of exon 6, which was predicted to induce a frame-shift and an early termination codon in all known alternative transcript variants of TNFRSF11A. The predicted effect of the mutation for the isoforms was different from those of the previously reported mutations, which could explain the difference of their phenotypes. Thus, our study identified the second disease gene for DOS. TNFRSF11A isoforms may have the different roles in skeletal development and metabolism.


Assuntos
Mutação , Osteosclerose/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Adolescente , Alelos , Éxons , Feminino , Heterogeneidade Genética , Humanos , Íntrons , Reação em Cadeia da Polimerase , Sítios de Splice de RNA , Turquia , Sequenciamento do Exoma
14.
Am J Med Genet A ; 176(12): 2740-2750, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30548201

RESUMO

The oculoauriculofrontonasal syndrome (OAFNS) is a rare disorder characterized by the association of frontonasal dysplasia (widely spaced eyes, facial cleft, and nose abnormalities) and oculo-auriculo-vertebral spectrum (OAVS)-associated features, such as preauricular ear tags, ear dysplasia, mandibular asymmetry, epibulbar dermoids, eyelid coloboma, and costovertebral anomalies. The etiology is unknown so far. This work aimed to identify molecular bases for the OAFNS. Among a cohort of 130 patients with frontonasal dysplasia, accurate phenotyping identified 18 individuals with OAFNS. We describe their clinical spectrum, including the report of new features (micro/anophtalmia, cataract, thyroid agenesis, polymicrogyria, olfactory bulb hypoplasia, and mandibular cleft), and emphasize the high frequency of nasal polyps in OAFNS (56%). We report the negative results of ALX1, ALX3, and ALX4 genes sequencing and next-generation sequencing strategy performed on blood-derived DNA from respectively, four and four individuals. Exome sequencing was performed in four individuals, genome sequencing in one patient with negative exome sequencing result. Based on the data from this series and the literature, diverse hypotheses can be raised regarding the etiology of OAFNS: mosaic mutation, epigenetic anomaly, oligogenism, or nongenetic cause. In conclusion, this series represents further clinical delineation work of the rare OAFNS, and paves the way toward the identification of the causing mechanism.


Assuntos
Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Orelha Externa/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Padrões de Herança , Fenótipo , Anormalidades do Sistema Respiratório/diagnóstico , Anormalidades do Sistema Respiratório/genética , Coluna Vertebral/anormalidades , Adolescente , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Fácies , Feminino , Proteínas de Homeodomínio/genética , Humanos , Lactente , Recém-Nascido , Masculino , Locos de Características Quantitativas , Crânio/anormalidades , Crânio/diagnóstico por imagem , Tomografia Computadorizada Espiral , Fatores de Transcrição/genética , Sequenciamento do Exoma
15.
Int J Mol Sci ; 19(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642415

RESUMO

Biallelic mutations in RECQL4 gene, a caretaker of the genome, cause Rothmund-Thomson type-II syndrome (RTS-II) and confer increased cancer risk if they damage the helicase domain. We describe five families exemplifying clinical and allelic heterogeneity of RTS-II, and report the effect of pathogenic RECQL4 variants by in silico predictions and transcripts analyses. Complete phenotype of patients #39 and #42 whose affected siblings developed osteosarcoma correlates with their c.[1048_1049del], c.[1878+32_1878+55del] and c.[1568G>C;1573delT], c.[3021_3022del] variants which damage the helicase domain. Literature survey highlights enrichment of these variants affecting the helicase domain in patients with cancer outcome raising the issue of strict oncological surveillance. Conversely, patients #29 and #19 have a mild phenotype and carry, respectively, the unreported homozygous c.3265G>T and c.3054A>G variants, both sparing the helicase domain. Finally, despite matching several criteria for RTS clinical diagnosis, patient #38 is heterozygous for c.2412_2414del; no pathogenic CNVs out of those evidenced by high-resolution CGH-array, emerged as contributors to her phenotype.


Assuntos
Mutação , Fenótipo , Síndrome de Rothmund-Thomson/genética , Adolescente , Adulto , Linhagem Celular Tumoral , Criança , Feminino , Homozigoto , Humanos , Masculino , Linhagem , RecQ Helicases/genética , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/patologia
16.
Hum Mol Genet ; 24(8): 2267-73, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25561690

RESUMO

Colobomatous macrophthalmia with microcornea syndrome (MACOM, Online Mendelian Inheritance in Man (OMIM) 602499) is an autosomal dominantly inherited malformation of the eye, which is characterized by microcornea with increased axial length, coloboma of the iris and of the optic disc, and severe myopia. We performed whole-exome sequencing (WES) in two affected individuals from the 2p23-p16-linked MACOM family, which includes 13 affected individuals in 3 generations. As no shared novel variation was found on the linked haplotype, we performed copy number variation (CNV) analysis by comparing the coverage of all exons in the WES data sets of the 2 patients with the coverage of 26 control exomes. We identified a heterozygous deletion predicted to span 22 kb including exons 14-17 of CRIM1 (cysteine-rich transmembrane bone morphogenetic protein (BMP) regulator 1). Quantitative PCR (qPCR) analysis confirmed the deletion, which was present in 11 affected individuals. Split-read analysis of WES data followed by breakpoint PCR and Sanger sequencing determined both breakpoints flanked by a 4-bp microhomology (CTTG). In the mouse, Crim1 is a growth-factor-binding protein with pleiotropic roles in the development of multiple organs, including the eye. To investigate the role of Crim1 during eye development in mice, we crossed a Crim1(flox) mouse line with the Ap2α-cre mouse line, which expresses Cre in the head surface ectoderm. Strikingly, we observed alterations of eye development in homozygous mice leading to severe anatomical and morphological changes overlapping with the anomalies observed in MACOM patients. Taken together, these findings identify CRIM1 as the causative gene for MACOM syndrome and emphasize the importance of CRIM1 in eye development.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Doenças da Córnea/genética , Anormalidades do Olho/genética , Olho/crescimento & desenvolvimento , Haploinsuficiência , Proteínas de Membrana/metabolismo , Adulto , Animais , Sequência de Bases , Receptores de Proteínas Morfogenéticas Ósseas/genética , Doenças da Córnea/metabolismo , Doenças da Córnea/fisiopatologia , Variações do Número de Cópias de DNA , Éxons , Olho/anatomia & histologia , Olho/metabolismo , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Feminino , Homozigoto , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Linhagem , Adulto Jovem
17.
Hum Mol Genet ; 24(13): 3708-17, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25839420

RESUMO

DNA double-strand breaks (DSBs) are highly toxic lesions, which, if not properly repaired, can give rise to genomic instability. Non-homologous end-joining (NHEJ), a well-orchestrated, multistep process involving numerous proteins essential for cell viability, represents one major pathway to repair DSBs in mammalian cells, and mutations in different NHEJ components have been described in microcephalic syndromes associated, e.g. with short stature, facial dysmorphism and immune dysfunction. By using whole-exome sequencing, we now identified in three affected brothers of a consanguineous Turkish family a homozygous mutation, c.482G>A, in the XRCC4 gene encoding a crucial component of the NHEJ pathway. Moreover, we found one additional patient of Swiss origin carrying the compound heterozygous mutations c.25delG (p.His9Thrfs*8) and c.823C>T (p.Arg275*) in XRCC4. The clinical phenotype presented in these patients was characterized by severe microcephaly, facial dysmorphism and short stature, but they did not show a recognizable immunological phenotype. We showed that the XRCC4 c.482G>A mutation, which affects the last nucleotide of exon 4, induces defective splicing of XRCC4 pre-mRNA mainly resulting in premature protein truncation and most likely loss of XRCC4 function. Moreover, we observed on cellular level that XRCC4 deficiency leads to hypersensitivity to DSB-inducing agents and defective DSB repair, which results in increased cell death after exposure to genotoxic agents. Taken together, our data provide evidence that autosomal recessive mutations in XRCC4 induce increased genomic instability and cause a NHEJ-related syndrome defined by facial dysmorphism, primary microcephaly and short stature.


Assuntos
Estatura , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Microcefalia/genética , Mutação Puntual , Adolescente , Criança , Feminino , Humanos , Lactente , Masculino , Microcefalia/fisiopatologia , Fenótipo , Turquia
18.
Hum Genet ; 136(7): 821-834, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28393272

RESUMO

Pathogenic variants in genes encoding subunits of the spliceosome are the cause of several human diseases, such as neurodegenerative diseases. The RNA splicing process is facilitated by the spliceosome, a large RNA-protein complex consisting of small nuclear ribonucleoproteins (snRNPs), and many other proteins, such as heterogeneous nuclear ribonucleoproteins (hnRNPs). The HNRNPU gene (OMIM *602869) encodes the heterogeneous nuclear ribonucleoprotein U, which plays a crucial role in mammalian development. HNRNPU is expressed in the fetal brain and adult heart, kidney, liver, brain, and cerebellum. Microdeletions in the 1q44 region encompassing HNRNPU have been described in patients with intellectual disability (ID) and other clinical features, such as seizures, corpus callosum abnormalities (CCA), and microcephaly. Recently, pathogenic HNRNPU variants were identified in large ID and epileptic encephalopathy cohorts. In this study, we provide detailed clinical information of five novels and review two of the previously published individuals with (likely) pathogenic de novo variants in the HNRNPU gene including three non-sense and two missense variants, one small intragenic deletion, and one duplication. The phenotype in individuals with variants in HNRNPU is characterized by early onset seizures (6/7), severe ID (6/6), severe speech impairment (6/6), hypotonia (6/7), and central nervous system (CNS) (5/6), cardiac (4/6), and renal abnormalities (3/4). In this study, we broaden the clinical and mutational HNRNPU-associated spectrum, and demonstrate that heterozygous HNRNPU variants cause epilepsy, severe ID with striking speech impairment and variable CNS, cardiac, and renal anomalies.


Assuntos
Epilepsia/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Heterozigoto , Deficiência Intelectual/genética , Idade de Início , Agenesia do Corpo Caloso/genética , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/patologia , Deleção Cromossômica , Cromossomos Humanos Par 1 , Epilepsia/diagnóstico , Feminino , Variação Genética , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Rim/anormalidades , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Fenótipo , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Convulsões/diagnóstico , Convulsões/genética
19.
J Hum Genet ; 62(3): 447-451, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27881841

RESUMO

Desbuquois dysplasia (DBQD) is an autosomal recessive skeletal disorder characterized by growth retardation, joint laxity, short extremities, and progressive scoliosis. DBQD is classified into two types based on the presence (DBQD1) or absence (DBQD2) of characteristic hand abnormalities. CANT1 mutations have been reported in both DBQD1 and DBQD2. Recently, mutations in the gene encoding xylosyltransferase 1 (XYLT1) were identified in several families with DBQD2. In this study, we performed whole-exome sequencing in two Turkish families with DBQD2. We found a novel and a recurrent XYLT1 mutation in each family. The patients were homozygous for the mutations. Our results further support that XYLT1 is responsible for a major subset of DBQD2.


Assuntos
Acondroplasia/genética , Displasia Campomélica/genética , Fissura Palatina/genética , Instabilidade Articular/genética , Mutação , Pentosiltransferases/genética , Acondroplasia/diagnóstico por imagem , Acondroplasia/patologia , Osso e Ossos/anormalidades , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Displasia Campomélica/diagnóstico por imagem , Displasia Campomélica/patologia , Criança , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/patologia , Consanguinidade , Exoma , Família , Feminino , Expressão Gênica , Homozigoto , Humanos , Lactente , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/patologia , Radiografia , Análise de Sequência de DNA , Turquia , UDP Xilose-Proteína Xilosiltransferase
20.
J Hum Genet ; 62(8): 797-801, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28331220

RESUMO

Spondylo-epi-metaphyseal dysplasia (SEMD) is a group of inherited skeletal diseases characterized by the anomalies in spine, epiphyses and metaphyses. SEMD is highly heterogeneous and >20 distinct entities have been identified. Here we describe a novel type of SEMD in two unrelated Turkish patients who presented with severe platyspondyly, kyphoscoliosis, pelvic distortion, constriction of the proximal femora and brachydactyly. Although these phenotypes overlap considerably with some known SEMDs, they had a novel causal gene, exostosin-like glycosyltransferase 3 (EXTL3), that encodes a glycosyltransferase involved in the synthesis of heparin and heparan sulfate. The EXTL3 mutation identified in the patients was a homozygous missense mutation (c.953C>T) that caused a substitution in a highly conserved amino acid (p.P318L). The enzyme activity of the mutant EXTL3 protein was significantly decreased compared to the wild-type protein. Both patients had spinal cord compression at the cranio-vertebral junction and multiple liver cysts since early infancy. One of the patients showed severe immunodeficiency, which is considered non-fortuitous association. Our findings would help define a novel type of SEMD caused by EXTL3 mutations.


Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Osteocondrodisplasias/genética , Feminino , Frequência do Gene , Humanos , Lactente , Osteocondrodisplasias/patologia , Osteocondrodisplasias/cirurgia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA