Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628396

RESUMO

Micrometer-thicker, biologically responsive nanocomposite films were prepared starting from alginate-metal alkoxide colloidal solution followed by sol-gel chemistry and solvent removal through evaporation-induced assembly. The disclosed approach is straightforward and highly versatile, allowing the entrapment and growth of a set of glassy-like metal oxide within the network of alginate and their shaping as crake-free transparent and flexible films. Immersing these films in aqueous medium triggers alginate solubilization, and affords water-soluble metal oxides wrapped in a biocompatible carbohydrate framework. Biological activity of the nano-composites films was also studied including their hemolytic activity, methemoglobin, prothrombin, and thrombine time. The effect of the films on fibroblasts and keratinocytes of human skin was also investigated with a special emphasis on the role played by the incorporated metal oxide. This comparative study sheds light on the crucial biological response of the ceramic phase embedded inside of the films, with titanium dioxide being the most promising for wound healing purposes.


Assuntos
Alginatos , Nanoestruturas , Alginatos/farmacologia , Humanos , Óxidos/farmacologia , Água/farmacologia , Cicatrização
2.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768816

RESUMO

Marine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing. Both microcrystalline and nano-sized cellulose, as well as native and phosphorylated cellulose, were used as fillers to simultaneously elucidate the roles of size and functionalization. The assessment of their influences on hemostatic properties indicated that the tested nanocomposites shorten clotting times by affecting both the extrinsic and intrinsic pathways of the blood coagulation system. We also showed that all biocomposites have antioxidant capacity. Moreover, the cytotoxicity and genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. The nature of the cellulose used as a filler was found to influence their cytotoxicity at a relatively low level. Potential mechanisms of cytotoxicity were also investigated; only one (phosphorylated microcellulose-filled chitosan films) of the compounds tested produced reactive oxygen species (ROS) to a small extent, and some films reduced the level of ROS, probably due to their antioxidant properties. The transmembrane mitochondrial potential was very slightly lowered. These biocompatible films showed no genotoxicity, and very importantly for wound healing, most of them significantly accelerated migration of both fibroblasts and keratinocytes.


Assuntos
Celulose/química , Quitosana , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Nanocompostos/química , Linhagem Celular , Movimento Celular , Celulose/farmacologia , Fibroblastos/fisiologia , Humanos , Queratinócitos/fisiologia , Fosforilação , Cicatrização
3.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072512

RESUMO

Synthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging. The purposes of this study were to evaluate the antibacterial activity of a set of chitosan-metal oxide films and different chitosan-modified graphene (oxide) films against two foodborne pathogens: Campylobacter jejuni ATCC 33560 and Listeria monocytogenes 19115. Moreover, we wanted to check whether the incorporation of antimicrobial constituents such as TiO2, ZnO, Fe2O3, Ag, and graphene oxide (GO) into the polymer matrices can improve the antibacterial properties of these nanocomposite films. Finally, this research helps elucidate the interactions of these materials with eukaryotic cells. All chitosan-metal oxide films and chitosan-modified graphene (oxide) films displayed improved antibacterial (C. jejuni ATCC 33560 and L. monocytogenes 19115) properties compared to native chitosan films. The CS-ZnO films had excellent antibacterial activity towards L. monocytogenes (90% growth inhibition). Moreover, graphene-based chitosan films caused high inhibition of both tested strains. Chitosan films with graphene (GO, GOP, GOP-HMDS, rGO, GO-HMDS, rGOP), titanium dioxide (CS-TiO2 20:1a, CS-TiO2 20:1b, CS-TiO2 2:1, CS-TiO2 1:1a, CS-TiO2 1:1b) and zinc oxide (CS-ZnO 20:1a, CS-ZnO 20:1b) may be considered as a safe, non-cytotoxic packaging materials in the future.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis , Quitosana , Microbiologia de Alimentos , Embalagem de Alimentos , Membranas Artificiais , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Quitosana/química , Metais/química , Polímeros
4.
Chem Rec ; 20(8): 753-772, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32090441

RESUMO

Tremendous interest was recently devoted to the preparation of porous and functional materials through sustainable route, including primarily the use of renewable biopolymers instead of petroleum-sourced synthetic chemicals. Among the biopolymers available in enormous quantity, chitosan - obtained by deacetylation of chitin - stands as the sole nitrogen-containing cationic amino-sugar carbohydrate. This distinctively provides chitosan derivatives with plenty of opportunities in materials science. Particularly, its pH switchable solubility allowed the preparation of three-dimensional entangled nanofibrillated self-standing microspheres. These porous hydrogels behave as nano-reactors to confine exogenous nanoobjects within the polysaccharide network, including sol-gel metal alkoxide species, organometallic derivatives and isotropic and oriented nanoparticles. Besides, the interfacial interplay of chitosan with lamellar clay and graphene oxide allowed the penetration of the biopolymer inside of the galleries, which result in a complete delamination of the layered nanomaterials. The preserved gelation memory of chitosan in these formulations provides a way to access porous microspheres entangling exfoliated nanometric sheets. CO2 supercritical drying of functional hydrogel beads enabled efficient removal of water and other liquid solvents without wall collapsing, allowing large-scale preparation of millimetric hydrocolloidal microspheres with an open macroporous network. These functionalized lightweight biopolymer aerogels find applications in heterogeneous catalysis, sensing, adsorption, insulation and for the design of other sophisticated porous nanostructures. Beyond their tailorable molecular and textural-engineering, the possibility for macroscopic shaping of these intriguing nanostructures opens many new opportunities, especially in additive-manufacturing for soft and hybrid robotics.


Assuntos
Biopolímeros/química , Quitosana/química , Microesferas , Configuração de Carboidratos , Quitosana/síntese química , Géis/química , Substâncias Macromoleculares/química , Nanoestruturas/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
5.
Molecules ; 24(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509955

RESUMO

Adsorption of Pd(NH3)42+ in preformed chitosan-graphene oxide (CS-GO) beads and their subsequent reduction with NaBH4 afford well-dispersed, high dispersion (~21%) of uniformly sized Pd nanoparticles (~1.7 nm). The resulting Pd/CS-GO exhibits interesting catalytic activity for hydrogen generation by ammonium formate decomposition. The optimal GO proportion of 7 wt% allows reaching, at 60 °C, a turnover frequency above 2200 h-1-being outstanding among the highest values reported for this process to date. Interestingly, no formation of CO or CH4 was detected. The catalyst did not leach, although it underwent gradual deactivation, probably caused by the increase in the Pd average size that became over 3 nm after three uses. Our results are relevant in the context of efficient on-board hydrogen generation from liquid organic hydrogen carriers in transportation.


Assuntos
Formiatos/química , Grafite/química , Hidrogênio/química , Paládio/química , Adsorção , Catálise , Quitosana/química , Nanopartículas/química , Porosidade
6.
Chemistry ; 21(17): 6400-8, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25754619

RESUMO

The preparation of novel families of phosphorus-based macromolecular architectures called "onion peel" phosphorus nanodendritic systems is reported. This construct is based on the versatility of methods of synthesis using several building blocks and on the capability of these systems to undergo regioselective reactions within the cascade structure. Sustainable metal-free routes such as the Staudinger reaction or Schiff-base condensation, involving only water and nitrogen as byproducts, allow access to several dendritic macromolecules bearing up to seven different phosphorus units in their backbone, each of them featuring specific reactivity. The presence of the highly aurophilic P=N-P=S fragment enables selective ligation of Au(I) within the dendritic framework.

7.
Chemistry ; 20(31): 9596-606, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24958393

RESUMO

Novel silicates were prepared by using silylated natural fatty acids (derived from triglyceride renewable oils) as co-condensing reagents in presence of tetraethyl orthosilicate (TEOS) and the triblock copolymer, pluronic P123, as a structure directing agent. A series of carboxylic acid functionalized SBA-15-type mesoporous silicates were obtained with tunable nanoscopic order and reactive functional groups that allow the conjugation of amino probes by peptide coupling. Photophysical studies of the covalently linked aminopyrene substantiated that the internal framework of these materials have pronounced hydrophobicity. Moreover, phase separation that can emanate from the bulkiness of the starting fatty silanes has been ruled out owing to the absence of excimers after aminopyrene grafting. The hemotoxicity, cytotoxicity, and antimicrobial activity of these novel silicates were then evaluated. Without discrimination, the functionalized silicates show a significant decrease of red blood cell hemolysis as compared to bare SBA-15-silica material. Within the modified silicate series, germanium-free mesoporous silicates induce only a slight decrease in cell viability and, more interestingly, they exhibit negligible hemolytic effect. Moreover, increasing their concentration in the medium reduces the concentration of released hemoglobin as a result of Hb adsorption. Promising antimicrobial properties were also observed for these silicates with a slight dependency on whether phenylgermanium fragments were present within the silicate framework.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Poloxaleno/química , Silanos/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Poloxaleno/farmacologia , Silanos/farmacologia , Propriedades de Superfície
8.
J Nanosci Nanotechnol ; 14(1): 308-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730265

RESUMO

Polysaccharides are a new class of pervasive biopolymers that display many advantages including wide availability, sustainability, inherent inclusion of chemical functionality, biocompatibility and biodegradability. Current efforts are focused on the catalytic transformation of these macromolecules into fuels and platform chemicals. However, there is growing interest in using biopolymers directly to create functional materials. Particularly, the ability of some polysaccharides to form physical and chemical porous hydrogels has opened new avenues for material synthesis and has been the driving force for rethinking the strategies used to create value-added nanomaterials from naturally available biomass. Among them, chitosan is on the rise due to the presence of amino groups on the polymer backbone that distinguishes it as a unique natural cationic polymer. This contribution sheds light on the opportunities offered by engineering the secondary structure of chitosan fibrillar hydrogels. The optimization and stabilization of the open framework structure of these soft-materials are crucial to designing novel functional hybrid materials, dispersed chitosan-metal nanoparticles and hierarchical porous inorganic materials.


Assuntos
Materiais Biocompatíveis/síntese química , Quitosana/química , Cristalização/métodos , Hidrogéis/síntese química , Nanopartículas/química , Nanopartículas/ultraestrutura , Módulo de Elasticidade , Dureza , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
ChemSusChem ; : e202301767, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728537

RESUMO

The modification of molybdenum carbide catalysts by another transition metal has raised an increasing research interest due to the significant improvement of catalyst activity in hydrodeoxygenation of lignin derivatives. At par with the commonly used Co and Ni that add a strong hydrogenation functionality, it was found that the addition of the more oxophilic W restricts ring hydrogenation while allowing the deoxygenation of oxygenated compounds and thus yielding higher selectivity toward the formation of non-oxygenated aromatic compounds. The coexistence of Mo2C with W2C along with metallic W altered the electronic properties of Mo2C which resulted in an increase of catalyst active site density and facilitated further total eugenol deoxygenation. Propyl-benzene selectivity of up to 83 % was reached at close to 100 % eugenol conversion. These findings will allow a better overview of the effect of different metal phases of mixed carbides on the catalyst performance and raise the prospect of optimizing catalyst design for a hydrodeoxygenation processing of lignin depolymerization products.

10.
Chem Commun (Camb) ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967366

RESUMO

The preparation of MOF composites is considered as an effective method to address the challenges of shaping MOFs and to create porous solids with enhanced properties and broader applications. In this study, CPO-27-Co was crystallized via a simple strategy within porous chitosan beads. The resulting CS@CPO-27-Co composites were tested for CO2 sorption and they demonstrated promising performances by exceeding 3 mmol(CO2) g-1. The versatility of this strategy was further demonstrated by replacing cobalt(II) ions with nickel(II), also leading to the isostructural CPO-27 framework.

11.
Mol Pharm ; 10(3): 1131-7, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23379345

RESUMO

Inhibition of α-synuclein (ASN) fibril formation is a potential therapeutic strategy in Parkinson's disease and other synucleinopathies. The aim of this study was to examine the role of viologen-phosphorus dendrimers in the α-synuclein fibrillation process and to assess the structural changes in α-synuclein under the influence of dendrimers. ASN interactions with phosphonate and pegylated surface-reactive viologen-phosphorus dendrimers were examined by measuring the zeta potential, which allowed determining the number of dendrimer molecules that bind to the ASN molecule. The fibrillation kinetics and the structural changes were examined using ThT fluorescence and CD spectroscopy. Depending on the concentration of the used dendrimer and the nature of the reactive groups located on the surface, ASN fibrillation kinetics can be significantly reduced, and even, in the specific case of phosphonate dendrimers, the fibrillation can be totally inhibited at low concentrations. The presented results indicate that viologen-phosphorus dendrimers are able to inhibit ASN fibril formation and may be used as fibrillar regulating agents in neurodegenerative disorders.


Assuntos
Dendrímeros/química , Fósforo/química , Viologênios/química , alfa-Sinucleína/química , Dicroísmo Circular , Humanos
12.
Molecules ; 18(10): 12222-40, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24084024

RESUMO

A new class of viologen-phosphorus dendrimers (VPDs) has been recently shown to possess the ability to inhibit neurodegenerative processes in vitro. Nevertheless, in the Central Nervous Systems domain, there is little information on their impact on cell functions, especially on neuronal cells. In this work, we examined the influence of two VPD (VPD1 and VPD3) of zero generation (G0) on murine hippocampal cell line (named mHippoE-18). Extended analyses of cell responses to these nanomolecules comprised cytotoxicity test, reactive oxygen species (ROS) generation studies, mitochondrial membrane potential (ΔΨm) assay, cell death detection, cell morphology assessment, cell cycle studies, as well as measurements of catalase (CAT) activity and glutathione (GSH) level. The results indicate that VPD1 is more toxic than VPD3. However, these two tested dendrimers did not cause a strong cellular response, and induced a low level of apoptosis. Interestingly, VPD1 and VPD3 treatment led to a small decline in ROS level compared to untreated cells, which correlated with slightly increased catalase activity. This result indicates that the VPDs can indirectly lower the level of ROS in cells. Summarising, low-cytotoxicity on mHippoE-18 cells together with their ability to quench ROS, make the VPDs very promising nanodevices for future applications in the biomedical field as nanocarriers and/or drugs per se.


Assuntos
Dendrímeros/toxicidade , Viologênios/toxicidade , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Glutationa/metabolismo , Hipocampo/citologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Organofosfonatos/toxicidade , Espécies Reativas de Oxigênio/metabolismo
13.
Foods ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761228

RESUMO

The impact of synthetic packaging on environmental pollution has been observed for years. One of the recent trends of green technology is the development of biomaterials made from food processing waste as an alternative to plastic packaging. Polymers obtained from some polysaccharides, such as chitosan, could be an excellent solution. This study investigated the biodegradability of chitosan-metal oxide films (ZnO, TiO2, Fe2O3) and chitosan-modified graphene films (CS-GO-Ag) in a soil environment. We have previously demonstrated that these films have excellent mechanical properties and exhibit antibacterial activity. This study aimed to examine these films' biodegradability and the possibility of their potential use in the packaging industry. The obtained results show that soil microorganisms were able to utilize chitosan films as the source of carbon and nitrogen, thus providing essential evidence about the biodegradability of CS, CS:Zn (20:1; 10:1), and CS:Fe2O3 (20:1) films. After 6 weeks of incubation, the complete degradation of the CS-Fe2O3 20:1 sample was noted, while after 8 weeks, CS-ZnO 20:1 and CS-ZnO 10:1 were degraded. This is a very positive result that points to the practical aspect of the biodegradability of such films in soil, where garbage is casually dumped and buried. Once selected, biodegradable films can be used as an alternative to plastic packaging, which contributes to the reduction in pollution in the environment.

14.
ACS Appl Mater Interfaces ; 15(46): 53395-53404, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934853

RESUMO

This study investigates the use of chitosan hydrogel microspheres as a template for growing an extended network of MOF-type HKUST-1. Different drying methods (supercritical CO2, freeze-drying, and vacuum drying) were used to generate three-dimensional polysaccharide nanofibrils embedding MOF nanoclusters. The resulting HKUST-1@Chitosan beads exhibit uniform and stable loadings of HKUST-1 and were used for the adsorption of CO2, CH4, Xe, and Kr. The maximum adsorption capacity of CO2 was found to be 1.98 mmol·g-1 at 298 K and 1 bar, which is significantly higher than those of most MOF-based composite materials. Based on Henry's constants, thus-prepared HKUST-1@CS beads also exhibit fair selectivity for CO2 over CH4 and Xe over Kr, making them promising candidates for capture and separation applications.

15.
Chemistry ; 18(27): 8264-77, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22689451

RESUMO

Recently, organic-inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface-reactive organic-inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self-standing microspheres. Nanocasting of sol-gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO(2) supercritical drying provide high-surface-area organic-inorganic hybrid materials. Examples including chitosan-SiO(2), chitosan-TiO(2), chitosan-redox-clusters and chitosan-clay-aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.


Assuntos
Quitosana/química , Microesferas , Estrutura Molecular
16.
Mol Pharm ; 9(3): 448-57, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22214284

RESUMO

Some biological properties of eight dendrimers incorporating both phosphorus linkages and viologen units within their cascade structure or at the periphery were investigated for the first time. In particular cytotoxicity, hemotoxicity, and antimicrobial and antifungal activity of these new macromolecules were examined. Even if for example all these species exhibited good antimicrobial properties, it was demonstrated that their behavior strongly depends on several parameters as their size and molecular weight, the number of viologen units and the nature of the terminal groups.


Assuntos
Dendrímeros/química , Fósforo/química , Viologênios/química , Antibacterianos/efeitos adversos , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/efeitos adversos , Antifúngicos/química , Antifúngicos/farmacologia , Dendrímeros/efeitos adversos , Dendrímeros/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular
17.
RSC Adv ; 12(33): 21145-21152, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975068

RESUMO

Owing to their use in water-cleaning technology, titanium-dioxide-based nanomaterials have dominated the photocatalysis scene, with so-called Degussa (P25) being the most promising under UV light. However, this is not the case under visible light, where it is necessary to combine titanium dioxide with other photosensitising nanomaterials. Unfortunately, most of the strategies aimed in this direction are chemically non-facile, energy-intensive, economically expensive, and not suitable for large-scale production. We herein describe a straightforward solvent-free approach for accessing visible-light-activated titanium-dioxide-based photocatalysts via the mechanochemical grinding of Degussa P25 with a second solid partner. Upon comparing several solid-material benchmarks, P25-graphene oxide is the best combination. The resulting material showed efficient performance for the adsorption and photodegradation of different dye pollutants, namely methylene blue, malachite green, Congo red, and methyl orange. The recorded performance was nearly comparable to that reached using sol-gel materials, with the ultimate advantage of being more sustainable and industrially scalable. The recyclability can be improved through a porous-bead configuration using biomass waste chitosan hydrogel, an approach that can further fulfill the requirement for more sustainable photocatalyst designs.

18.
Chemistry ; 17(28): 7940-6, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21598322

RESUMO

The ability of chitosan biopolymer to coordinate vanadium, tungsten and molybdenum metallic species and to control their mineralisation growth provides a new family of surface-reactive organic-inorganic hybrid microspheres. Drying the resulting materials under supercritical conditions allowed the gel network dispersion to be retained, thereby leading to a macroporous catalyst with surface areas ranging from 253 to 278 m(2) g(-1). On account of the open framework structure of these microspheres, the redox species entangled within the fibrillar network of the polysaccharide aerogels were found to be active, selective and reusable catalysts for cinamylalcohol oxidations.

19.
Chemistry ; 17(32): 8984-94, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21732428

RESUMO

This work describes the synthesis of novel functional silica materials with difunctional thiol-amide substructures and featuring regular architectures on a mesoscopic level. The functional materials were synthesised by both one-pot co-condensation and post-grafting approaches. The thiol groups confined in the matrix were found to be efficient for palladium entrapment, leading to highly active and reusable heterogeneous catalysts for Sonogashira and Suzuki-Miyaura cross-coupling reactions. This work evidences the crucial role of both the thiol precursor and the condensation degree of the silica scaffold in view of the design of stable and reusable tailor-made mesoporous catalytic silica materials.

20.
RSC Adv ; 11(45): 28116-28125, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480731

RESUMO

Titanium dioxide is an ubiquitous photocatalyst in water-cleaning technologies, being presently the most promising tools to resolve the global issue of sewage treatment. In this framework, titanium dioxide-graphene nanocomposites are discussed as promising visible-light activated photocatalysts but little is hitherto known about the surface and interface chemistry bridging the metal oxide and carbon phases. In an attempt to spotlight this overlooked issue, we herein designed two different hybrid nanocomposites through covalent grafting and growth of titanium dioxide clusters on graphene oxide and on phosphorylated graphene oxide, which affords GO@TiO2 and PGO@TiO2, respectively. While anatase could be selectively harvested on the surface of GO@TiO2, biphasic anatase-rutile nucleates could be obtained on PGO@TiO2. Thermal annealing treatments improve the metal oxide crystallization and further remove oxygenated groups from the surface of graphene. The interfacial stability of these photocatalysts was also investigated under irradiation, with the graphene support being sensitive to the proximal presence of titanium dioxide. The resulting nanocomposites were also assessed for methylene blue removal through adsorption and photocatalysis. Regardless of their composition, superior photoactivity was noticed for the nanocomposites compared to commercially available degussa that display marginal visible-light photoactivity (11% removal). Within our study, PGO@TiO2-500 stands as the most active catalyst, allowing nearly quantitative removal of the pollutant from water. The superior performance of PGO@TiO2-500 can be explained by the highest stability reached through P-O-Ti bonding, its improved crystallinity, and the reduction of the graphene surface during thermal treatment. On a whole, this study provides a blueprint for comparing semiconducting metal oxide grown on tuneable surface-interfacial graphene environments and highlights the utility of surface-engineering graphene sheets to access efficient visible-light oxidation photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA