Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(31): e2201146119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878041

RESUMO

Aberrant immune responses, including hyperresponsiveness to Toll-like receptor (TLR) ligands, underlie acute respiratory distress syndrome (ARDS). Type I interferons confer antiviral activities and could also regulate the inflammatory response, whereas little is known about their actions to resolve aberrant inflammation. Here we report that interferon-ß (IFN-ß) exerts partially overlapping, but also cooperative actions with aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 to counter TLR9-generated cues to regulate neutrophil apoptosis and phagocytosis in human neutrophils. In mice, TLR9 activation impairs bacterial clearance, prolongs Escherichia coli-evoked lung injury, and suppresses production of IFN-ß and the proresolving lipid mediators 15-epi-LXA4 and resolvin D1 (RvD1) in the lung. Neutralization of endogenous IFN-ß delays pulmonary clearance of E. coli and aggravates mucosal injury. Conversely, treatment of mice with IFN-ß accelerates clearance of bacteria, restores neutrophil phagocytosis, promotes neutrophil apoptosis and efferocytosis, and accelerates resolution of airway inflammation with concomitant increases in 15-epi-LXA4 and RvD1 production in the lungs. Pharmacological blockade of the lipoxin receptor ALX/FPR2 partially prevents IFN-ß-mediated resolution. These findings point to a pivotal role of IFN-ß in orchestrating timely resolution of neutrophil and TLR9 activation-driven airway inflammation and uncover an IFN-ß-initiated resolution program, activation of an ALX/FPR2-centered, proresolving lipids-mediated circuit, for ARDS.


Assuntos
Interferon beta , Lipoxinas , Síndrome do Desconforto Respiratório , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/imunologia , Humanos , Inflamação/tratamento farmacológico , Interferon beta/imunologia , Interferon beta/farmacologia , Lipoxinas/farmacologia , Camundongos , Receptores de Formil Peptídeo/antagonistas & inibidores , Síndrome do Desconforto Respiratório/tratamento farmacológico , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Ativação Transcricional/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 117(14): 7971-7980, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205444

RESUMO

Timely resolution of bacterial infections critically depends on phagocytosis of invading pathogens by polymorphonuclear neutrophil granulocytes (PMNs), followed by PMN apoptosis and efferocytosis. Here we report that bacterial DNA (CpG DNA) and mitochondrial DNA impair phagocytosis and attenuate phagocytosis-induced apoptosis in human PMNs through Toll-like receptor 9 (TLR9)-mediated release of neutrophil elastase and proteinase 3 and subsequent down-regulation of the complement receptor C5aR. Consistently, CpG DNA delays pulmonary clearance of Escherichia coli in mice and suppresses PMN apoptosis, efferocytosis, and generation of proresolving lipid mediators, thereby prolonging lung inflammation evoked by E. coli Genetic deletion of TLR9 renders mice unresponsive to CpG DNA. We also show that aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 (17-epi-RvD1) through the receptor ALX/FPR2 antagonize cues from CpG DNA, preserve C5aR expression, restore impaired phagocytosis, and redirect human PMNs to apoptosis. Treatment of mice with 15-epi-LXA4 or 17-epi-RvD1 at the peak of inflammation accelerates clearance of bacteria, blunts PMN accumulation, and promotes PMN apoptosis and efferocytosis, thereby facilitating resolution of E. coli-evoked lung injury. Collectively, these results uncover a TLR9-mediated endogenous mechanism that impairs PMN phagocytosis and prolongs inflammation, and demonstrate both endogenous and therapeutic potential for 15-epi-LXA4 and 17-epi-RvD1 to restore impaired bacterial clearance and facilitate resolution of acute lung inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Infecções por Escherichia coli/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Pneumonia/imunologia , Receptor Toll-Like 9/metabolismo , Adulto , Idoso , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Células Cultivadas , Ilhas de CpG/imunologia , DNA Bacteriano/imunologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Escherichia coli/genética , Escherichia coli/imunologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Voluntários Saudáveis , Humanos , Lipoxinas/farmacologia , Lipoxinas/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Pneumonia/patologia , Cultura Primária de Células , Receptores de Formil Peptídeo/imunologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/imunologia , Receptores de Lipoxinas/metabolismo
3.
Biol Chem ; 396(11): 1181-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26040008

RESUMO

The prototypic acute-phase reactant C-reactive protein (CRP) has long been recognized as a useful marker and gauge of inflammation. CRP also plays an important role in host defense against invading pathogens as well as in inflammation. CRP consists of five identical subunits arranged as a cyclic pentamer. CRP exists in at least two conformationally distinct forms, i.e. native pentameric CRP (pCRP) and modified/monomeric CRP (mCRP). These isoforms bind to distinct receptors and lipid rafts, and exhibit distinct functional properties. Dissociation of pCRP into its subunits occurs within the inflammatory microenvironment and newly formed mCRP may then contribute to localizing the inflammatory response. Accumulating evidence indicates that pCRP possesses both pro- and anti-inflammatory actions in a context-dependent manner, whereas mCRP exerts potent pro-inflammatory actions on endothelial cells, endothelial progenitor cells, leukocytes and platelets, and thus may amplify inflammation. Here, we review recent advances that may explain how conformational changes in CRP contribute to shaping the inflammatory response and discuss CRP isomers as potential therapeutic targets to dampen inflammation.


Assuntos
Proteína C-Reativa/química , Proteína C-Reativa/metabolismo , Inflamação/metabolismo , Animais , Humanos , Conformação Proteica
4.
Crit Care Med ; 43(6): e179-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855902

RESUMO

OBJECTIVE: Bacterial DNA (CpG DNA) persists in tissues and blood under pathological conditions that are associated with enhanced intravascular coagulation. Toll-like receptor 9 recognizes CpG DNA and elicits innate and adoptive immunity, yet the impact of CpG DNA on coagulation has not been studied. In this study, we investigated the effects of CpG DNA on the expression and activity of tissue factor, a key initiator of coagulation and tissue factor pathway inhibitor in human coronary artery endothelial cells and on coagulation in mice. DESIGN: Controlled in vitro and in vivo studies. SETTING: University research laboratory. SUBJECTS: Cultured human coronary artery endothelial cell, wild-type mice, and TLR9-deficient mice. INTERVENTIONS: Human coronary artery endothelial cell was challenged with CpG DNA, and tissue factor and tissue factor pathway inhibitor expression and activity were assessed. In mice, the effects of CpG DNA on bleeding time and plasma levels of thrombin-antithrombin complexes and tissue factor were measured. MEASUREMENTS AND MAIN RESULTS: We found that CpG DNA, but not eukaryotic DNA, evoked marked nuclear factor-κB-mediated increases in tissue factor expression at both messenger RNA and protein levels, as well as in tissue factor activity. Conversely, CpG DNA significantly reduced tissue factor pathway inhibitor transcription, secretion, and activity. Inhibition of Toll-like receptor 9 with a telomere-derived Toll-like receptor 9 inhibitory oligonucleotide or transient Toll-like receptor 9 knockdown with small interfering RNA attenuated human coronary artery endothelial cell responses to CpG DNA. In wild-type mice, CpG DNA shortened the bleeding time parallel with dramatic increases in plasma thrombin-antithrombin complex and tissue factor levels. Pretreatment with inhibitory oligonucleotide or anti-tissue factor antibody or genetic deletion of TLR9 prevented these changes, whereas depleting monocytes with clodronate resulted in a modest partial inhibition. CONCLUSIONS: Our findings demonstrate that bacterial DNA through Toll-like receptor 9 shifted the balance of tissue factor and tissue factor pathway inhibitor toward procoagulant phenotype in human coronary artery endothelial cells and activated blood coagulation in mice. Our study identifies Toll-like receptor 9 inhibitory oligonucleotides as potential therapeutic agents for the prevention of coagulation in pathologies where bacterial DNA may abundantly be present.


Assuntos
Coagulação Sanguínea/fisiologia , DNA Bacteriano/metabolismo , Células Endoteliais/efeitos dos fármacos , Receptor Toll-Like 9/metabolismo , Animais , Vasos Coronários/metabolismo , Expressão Gênica , Humanos , Lipoproteínas , Camundongos , NF-kappa B/metabolismo , RNA Mensageiro , RNA Interferente Pequeno , Tromboplastina , Técnicas de Cultura de Tecidos
5.
Proc Natl Acad Sci U S A ; 109(37): 14983-8, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927428

RESUMO

Inappropriate neutrophil activation contributes to the pathogenesis of acute lung injury (ALI). Apoptosis is essential for removal of neutrophils from inflamed tissues and timely resolution of inflammation. Resolvin E1 (RvE1) is an endogenous lipid mediator derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid that displays proresolving actions. Because the balance of prosurvival and proapoptosis signals determines the fate of neutrophils, we investigated the impact of RvE1 on neutrophil apoptosis and the outcome of neutrophil-mediated pulmonary inflammation in mice. Culture of human neutrophils with RvE1 accelerated apoptosis evoked by phagocytosis of opsonized Escherichia coli or yeast. RvE1 through the leukotriene B(4) receptor BLT1 enhanced NADPH oxidase-derived reactive oxygen species generation and subsequent activation of caspase-8 and caspase-3. RvE1 also attenuated ERK and Akt-mediated apoptosis-suppressing signals from myeloperoxidase, serum amyloid A, and bacterial DNA, shifting the balance of pro- and anti-survival signals toward apoptosis via induction of mitochondrial dysfunction. In mice, RvE1 treatment enhanced the resolution of established neutrophil-mediated pulmonary injury evoked by intratracheal instillation or i.p. administration of live E. coli or intratracheal instillation of carrageenan plus myeloperoxidase via facilitating neutrophil apoptosis and their removal by macrophages. The actions of RvE1 were prevented by the pan-caspase inhibitor zVAD-fmk. These results identify a mechanism, promotion of phagocytosis-induced neutrophil apoptosis and mitigation of potent anti-apoptosis signals, by which RvE1 could enhance resolution of acute lung inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Eicosapentaenoico/análogos & derivados , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Clorometilcetonas de Aminoácidos , Análise de Variância , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Células Cultivadas , Ácido Eicosapentaenoico/antagonistas & inibidores , Ácido Eicosapentaenoico/farmacologia , Escherichia coli , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores do Leucotrieno B4/metabolismo , Estatísticas não Paramétricas , Leveduras
6.
FASEB J ; 25(9): 3186-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21670067

RESUMO

C-reactive protein (CRP) has been implicated in the regulation of inflammation underlying coronary artery disease; however, little is known about the molecular mechanisms responsible for the expression of its pro- or anti-inflammatory activities. Here, we have identified the intrasubunit disulfide bond as a conserved switch that controls the structure and functions of CRP. Conformational rearrangement in human pentameric CRP to monomeric CRP (mCRP) is the prerequisite for this switch to be activated by reducing agents, including thioredoxin. Immunohistochemical analysis revealed 36-79% colocalization of thioredoxin and mCRP in human advanced coronary atherosclerotic lesions. Nonreduced mCRP was largely inert in activating human coronary artery endothelial cells (HCAECs), whereas reduced or cysteine-mutated mCRP evoked marked release of IL-8 and monocyte chemoattractant protein-1 from HCAECs, with ~50% increase at a concentration of 1 µg/ml. Reduced mCRP was ~4 to 40-fold more potent than mCRP in up-regulating adhesion molecule expression, promoting U937 monocyte adhesion to HCAECs, and inducing cytokine release from rabbit arteries ex vivo and in mice. These actions were primarily due to unlocking the lipid raft interaction motif. Therefore, expression of proinflammatory properties of CRP on endothelial cells requires sequential conformational changes, i.e., loss of pentameric symmetry followed by reduction of the intrasubunit disulfide bond.


Assuntos
Proteína C-Reativa/metabolismo , Proteína C-Reativa/farmacologia , Células Endoteliais/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteína C-Reativa/química , Células Cultivadas , LDL-Colesterol/metabolismo , Complemento C1q/metabolismo , Vasos Coronários/citologia , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Oxirredução , Ligação Proteica , Conformação Proteica , Coelhos
7.
J Immunol ; 182(7): 4386-94, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19299739

RESUMO

TLR9 detects bacterial DNA (CpG DNA) and elicits both innate and adoptive immunity. Recent evidence indicates that TLR9 is expressed in more diverse cell types than initially thought. In this study, we report that HUVECs constitutively express TLR9 and selectively recognize unmethylated CpG motifs in bacterial DNA and synthetic immune stimulatory CpG oligodeoxynucleotides. HUVECs respond to CpG DNA with rapid phosphorylation of IkappaB-alpha and NF-kappaB-mediated gene transcription and surface expression of the adhesion molecules ICAM-1 and E-selectin independent of MAPK signaling. The telomere-derived TLR9 inhibitory oligonucleotide 5'-TTT AGG GTT AGG GTT AGG G-3', agents that block endosomal acidification such as chloroquine and bafilomycin A, and NF-kappaB inhibitors abrogated CpG DNA-induced signaling. HUVEC activation by CpG DNA led to markedly enhanced neutrophil adhesion under nonstatic conditions that was further enhanced when neutrophils were stimulated with CpG DNA. The adhesive interactions were blocked by Abs against CD18 and, to a lesser degree, by anti-E-selectin and anti-L-selectin Abs. Our findings demonstrate that bacterial DNA promotes beta(2) integrin and E-selectin-mediated HUVEC-neutrophil adherence, and indicate the ability of CpG DNA to initiate and/or maintain the inflammatory response.


Assuntos
DNA Bacteriano/imunologia , Células Endoteliais/imunologia , Regulação da Expressão Gênica/imunologia , Neutrófilos/imunologia , Transdução de Sinais/fisiologia , Receptor Toll-Like 9/biossíntese , Western Blotting , Adesão Celular/fisiologia , DNA Bacteriano/metabolismo , Selectina E/imunologia , Selectina E/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Neutrófilos/metabolismo , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/metabolismo , Receptor Toll-Like 9/genética , Veias Umbilicais
8.
Circ Res ; 103(4): 352-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18617697

RESUMO

Polymorphonuclear neutrophil granulocytes have a central role in innate immunity and their programmed cell death and removal are critical for efficient resolution of acute inflammation. Myeloperoxidase (MPO), a heme protein abundantly expressed in neutrophils, is generally associated with killing of bacteria and oxidative tissue injury. Because MPO also binds to neutrophils, we investigated whether MPO could affect the lifespan of neutrophils. Here, we report that MPO independent of its catalytic activity through signaling via the adhesion molecule CD11b/CD18 rescued human neutrophils from constitutive apoptosis and prolonged their life span. MPO evoked a transient concurrent activation of extracellular signal-regulated kinase and Akt, leading to phosphorylation of Bad at both Ser112 and Ser136, prevention of mitochondrial dysfunction, and subsequent activation of caspase-3. Consistently, pharmacological inhibition of extracellular signal-regulated kinase, Akt, or caspase-3 reversed the antiapoptosis action of MPO. Acute increases in plasma MPO delayed murine neutrophil apoptosis assayed ex vivo. In a mouse model of self-resolving inflammation, MPO also prolonged the duration of carrageenan-induced acute lung injury, as evidenced by enhanced alveolar permeability and accumulation of neutrophils parallel with suppression of neutrophil apoptosis. Our results indicate that MPO functions as a survival signal for neutrophils and thereby contribute to prolongation of inflammation.


Assuntos
Apoptose/fisiologia , Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo , Animais , Carragenina , Caspase 3/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/fisiologia , Neutrófilos/citologia , Neutrófilos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
9.
Am J Respir Crit Care Med ; 180(4): 311-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19483113

RESUMO

RATIONALE: Apoptosis is essential for removal of neutrophils from inflamed tissues and efficient resolution of inflammation. Myeloperoxidase (MPO), abundantly expressed in neutrophils, not only generates cytotoxic oxidants but also signals through the beta(2) integrin Mac-1 to rescue neutrophils from constitutive apoptosis, thereby prolonging inflammation. OBJECTIVES: Because aspirin-triggered 15-epi-lipoxin A(4) (15-epi-LXA(4)) modulates Mac-1 expression, we investigated the impact of 15-epi-LXA(4) on MPO suppression of neutrophil apoptosis and MPO-mediated neutrophil-dependent acute lung injury. METHODS: Human neutrophils were cultured with MPO with or without 15-epi-LXA(4) to investigate development of apoptosis. Acute lung injury was produced by intratracheal injection of carrageenan plus MPO or intraperitoneal injection of live Escherichia coli in mice, and the animals were treated with 15-epi-LXA(4) at the peak of inflammation. MEASUREMENTS AND MAIN RESULTS: 15-Epi-LXA(4) through down-regulation of Mac-1 expression promoted apoptosis of human neutrophils by attenuating MPO-induced activation of extracellular signal-regulated kinase and Akt-mediated phosphorylation of Bad and by reducing expression of the antiapoptotic protein Mcl-1, thereby aggravating mitochondrial dysfunction. The proapoptotic effect of 15-epi-LXA(4) was dominant over MPO-mediated effects even when it was added at 4 hours post MPO. In mice, treatment with 15-epi-LXA(4) accelerated the resolution of established carrageenan plus MPO-evoked as well as E. coli-induced neutrophil-dependent pulmonary inflammation through redirecting neutrophils to caspase-mediated cell death and facilitating their removal by macrophages. CONCLUSIONS: These results demonstrate that aspirin-triggered 15-epi-LXA(4) enhances resolution of inflammation by overriding the powerful antiapoptosis signal from MPO, thereby demonstrating a hitherto unrecognized mechanism by which aspirin promotes resolution of inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Anti-Inflamatórios não Esteroides/farmacologia , Lipoxinas/farmacologia , Peroxidase/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Aspirina/farmacologia , Líquido da Lavagem Broncoalveolar/imunologia , Antígenos CD18/sangue , Caspase 3/sangue , Feminino , Humanos , Interleucina-6/sangue , Contagem de Leucócitos , Lipoxinas/sangue , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia
10.
ScientificWorldJournal ; 10: 1731-48, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20842319

RESUMO

Neutrophil granulocytes play a central role in host defense to infection and tissue injury. Their timely removal is essential for resolution of inflammation. Increasing evidence identified neutrophil apoptosis as an important control point in the development and resolution of inflammation. Delayed apoptosis and/or impaired clearance of neutrophils aggravate and prolong tissue injury. This review will focus on outside-in signals that provide survival cues for neutrophils, the hierarchy of pro- and antiapoptotic signals, and molecular targets in the antiapoptotic signaling network that can be exploited by endogenously produced bioactive lipids, such as lipoxins or pharmacological inhibitors, including cyclin-dependent kinase inhibitors, to redirect neutrophils to apoptosis in vivo, thus promoting resolution of inflammation.


Assuntos
Apoptose/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Inflamação/prevenção & controle , Contagem de Leucócitos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Roscovitina , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA