Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 28(1): 495-505, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121461

RESUMO

Protein kinase C (PKC) is a family of serine/threonine kinases implicated in a variety of physiological processes. We have shown previously that sustained activation of the classical PKCα and PKCßII induces their phospholipase D (PLD)-dependent internalization and translocation to a subset of the recycling endosomes defined by the presence of PKC and PLD (the pericentrion), which results in significant differences in phosphorylation of PKC substrates. Here, we have investigated the biological consequences of sustained PKC activity and the involvement of PLD in this process. We find that sustained activation of PKC results in activation of the mammalian target of rapamycin (mTOR)/S6 kinase pathway in a PLD- and endocytosis-dependent manner, with both pharmacologic inhibitors and siRNA implicating the PLD2 isoform. Notably, dysregulated overexpression of PKCßII in A549 lung cancer cells was necessary for the enhanced proliferation and migration of these cancer cells. Inhibition of PKCßII with enzastaurin reduced A549 cell proliferation by >60% (48 h) and migration by >50%. These biological effects also required both PLD activity and mTOR function, with both the PLD inhibitor FIPI and rapamycin reducing cell growth by >50%. Reciprocally, forced overexpression of wild-type PKCßII, but not an F666D mutant that cannot interact with PLD, was sufficient to enhance cell growth and increase migration of noncancerous HEK cells; indeed, both properties were almost doubled when compared to vector control and PKC-F666D-overexpressing cells. Notably, this condition was also dependent on both PLD and mTOR activity. In summary, these data define a PKC-driven oncogenic signaling pathway that requires both PLD and mTOR, and suggest that inhibitors of PLD or mTOR would be beneficial in cancers where PKC overexpression is a contributing or driving factor.


Assuntos
Complexos Multiproteicos/metabolismo , Fosfolipase D/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Endocitose/genética , Endocitose/fisiologia , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Fosfolipase D/genética , Proteína Quinase C/genética , Proteína Quinase C beta/genética , Serina-Treonina Quinases TOR/genética
2.
J Lipid Res ; 53(8): 1513-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615346

RESUMO

Ceramide is a bioactive sphingolipid with many associated biological outcomes, yet there is a significant gap in our current understanding of how ceramide mediates these processes. Previously, ceramide has been shown to activate protein phosphatase (PP) 1 and 2A. While continuing this line of work, a late fraction from a Mono-Q column was consistently observed to be activated by ceramide, yet PP1 and PP2A were undetectable in this fraction. Proteomic analysis of this fraction revealed the identity of the phosphatase to be PP2Cγ/PPM1G. This was consistent with our findings that PP2Cγ 1-eluted in a high salt fraction due to its strongly acidic domain, and 2-was insensitive to okadaic acid. Further characterization was performed with PP2Cα, which showed robust activation by C(6)-ceramide. Activation was specific for the erythro conformation of ceramide and the presence of the acyl chain and hydroxyl group at the first carbon. In order to demonstrate more physiological activation of PP2Cα by ceramide, phospho-p38δ was utilized as substrate. Indeed, PP2Cα induced the dephosphorylation of p38δ only in the presence of C(16)-ceramide. Taken together, these results show that the PP2C family of phosphatases is activated by ceramide, which may have important consequences in mediating the biological effects of ceramide.


Assuntos
Ceramidas/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Linhagem Celular , Ceramidas/química , Ceramidas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cinética , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2C , Ratos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato
3.
J Biol Chem ; 286(22): 19340-53, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21478146

RESUMO

It was previously demonstrated that sustained activation (30-60 min) of protein kinase C (PKC) results in translocation of PKC α and ßII to the pericentrion, a dynamic subset of the recycling compartment whose formation is dependent on PKC and phospholipase D (PLD). Here we investigated whether the formation of the pericentrion modulates the ability of PKC to phosphorylate substrates, especially if it reduces substrate phosphorylation by sequestering PKC. Surprisingly, using an antibody that detects phosphosubstrates of classical PKCs, the results showed that the majority of PKC phosphosubstrates are phosphorylated with delayed kinetics, correlating with the time frame of PKC translocation to the pericentrion. Substrate phosphorylation was blocked by PLD inhibitors and was not observed in response to activation of a PKC ßII mutant (F663D) that is defective in interaction with PLD and in internalization. Phosphorylation was also inhibited by blocking clathrin-dependent endocytosis, demonstrating a requirement for endocytosis for the PKC-dependent major phosphorylation effects. Serotonin receptor activation by serotonin showed a similar response to phorbol 12-myristate 13-acetate, implicating a potential role of delayed kinetics in G protein-coupled receptor signaling. Evaluation of candidate substrates revealed that the phosphorylation of the PKC substrate p70S6K kinase behaved in a similar manner. Gradient-based fractionation revealed that the majority of these PKC substrates reside within the pericentrion-enriched fractions and not in the plasma membrane. Finally, proteomic analysis of the pericentrion-enriched fractions revealed several proteins as known PKC substrates and/or proteins involved in endocytic trafficking. These results reveal an important role for PKC internalization and for the pericentrion as key determinants/amplifiers of PKC action.


Assuntos
Membrana Celular/enzimologia , Endocitose/fisiologia , Fosfolipase D/metabolismo , Proteína Quinase C/metabolismo , Substituição de Aminoácidos , Carcinógenos/farmacologia , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Mutação de Sentido Incorreto , Fosfolipase D/genética , Proteína Quinase C/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia , Acetato de Tetradecanoilforbol/farmacologia
4.
Cancer Res ; 67(15): 7275-83, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671196

RESUMO

Rearrangements of the mixed lineage leukemia gene MLL are associated with aggressive lymphoid and myeloid leukemias. The resulting MLL fusion proteins enforce high-level expression of HOX genes and the HOX cofactor MEIS1, which is pivotal for leukemogenesis. Both wild-type MLL and MLL fusion proteins interact with the tumor suppressor menin and with the Hoxa9 locus in vivo. Here, we show that MLL sequences between amino acids 5 and 44 are required for interaction with menin and for the transformation of hematopoietic progenitors. Blocking the MLL-menin interaction by the expression of a dominant negative inhibitor composed of amino terminal MLL sequences down-regulates Meis1 expression and inhibits cell proliferation, suggesting that targeting this interaction may be an effective therapeutic strategy for leukemias with MLL rearrangements.


Assuntos
Transformação Celular Neoplásica , Leucemia Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Regulação para Baixo , Expressão Gênica , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunoprecipitação , Rim/embriologia , Proteína Meis1 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA