Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5866-5879, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38661191

RESUMO

Multivalent recognition and binding of biological molecules is a natural phenomenon that increases the binding stability (avidity) without decreasing the recognition specificity. In this study, we took advantage of this phenomenon to increase the efficiency and maintain high specificity of RNA cleavage by DNAzymes (Dz). We designed a series of DNA constructs containing two Dz agents, named here bivalent Dz devices (BDD). One BDD increased the cleavage efficiency of a folded RNA fragment up to 17-fold in comparison with the Dz of a conventional design. Such an increase was achieved due to both the improved RNA binding and the increased probability of RNA cleavage by the two catalytic cores. By moderating the degree of Dz agent association in BDD, we achieved excellent selectivity in differentiating single-base mismatched RNA, while maintaining relatively high cleavage rates. Furthermore, a trivalent Dz demonstrated an even greater efficiency than the BDD in cleaving folded RNA. The data suggests that the cooperative action of several RNA-cleaving units can significantly improve the efficiency and maintain high specificity of RNA cleavage, which is important for the development of Dz-based gene knockdown agents.


Assuntos
DNA Catalítico , Clivagem do RNA , Dobramento de RNA , RNA , DNA Catalítico/química , DNA Catalítico/metabolismo , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , DNA/química , DNA/metabolismo , Ribonuclease H/metabolismo , Sítios de Ligação , Especificidade por Substrato
2.
Analyst ; 149(6): 1947-1957, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385166

RESUMO

Advancements in DNA computation have unlocked molecular-scale information processing possibilities, utilizing the intrinsic properties of DNA for complex logical operations with transformative applications in biomedicine. DNA computation shows promise in molecular diagnostics, enabling precise and sensitive detection of genetic mutations and disease biomarkers. Moreover, it holds potential for targeted gene regulation, facilitating personalized therapeutic interventions with enhanced efficacy and reduced side effects. Herein, we have developed six DNAzyme-based logic gates able to process YES, AND, and NOT Boolean logic. The novelty of this work lies in their additional functionalization with a common DNA scaffold for increased cooperativity in input recognition. Moreover, we explored hierarchical input binding to multi-input logic gates, which helped gate optimization. Additionally, we developed a new design of an allosteric hairpin switch used to implement NOT logic. All DNA logic gates achieved the desired true-to-false output signal when detecting a panel of miRNAs, known for their important role in malignancy regulation. This is the first example of DNAzyme-based logic gates having all input-recognizing elements integrated in a single DNA nanostructure, which provides new opportunities for building DNA automatons for diagnosis and therapy of human diseases.


Assuntos
DNA Catalítico , MicroRNAs , Nanoestruturas , Humanos , DNA Catalítico/química , MicroRNAs/genética , DNA/genética , DNA/química , Lógica , Computadores Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA