Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(5): 055201, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29219847

RESUMO

Recently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormous. Here, we report that the plasmon-induced light coupling amplifies emitted light by ∼1.6 times in doped large-area chemical-vapor-deposition-grown graphene, which is useful for practical applications. This coupling behavior also appears in GaN-based LEDs. With AuCl3-doped graphene on Ga-doped ZnO films that is used as transparent conducting electrodes for the LEDs, the average electroluminescence intensity is 1.2-1.7 times enhanced depending on the injection current. The chemical doping of graphene may produce the inhomogeneity in charge densities (i.e., electron/hole puddles) or roughness, which can play a role as grating couplers, resulting in such strong plasmon-enhanced light amplification. Based on theoretical calculations, the plasmon-coupled behavior is rigorously explained and a method of controlling its resonance condition is proposed.

2.
Sensors (Basel) ; 16(9)2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27618043

RESUMO

As surface plasmon resonance (SPR)-based biosensors are well translated into biological, chemical, environmental, and clinical fields, it is critical to further realize stable and sustainable systems, avoiding oxidation susceptibility of metal films-in particular, silver substrates. We report an enhanced SPR detection performance by incorporating a TiO2 layer on top of a thin silver film. A uniform TiO2 film fabricated by electron beam evaporation at room temperature is an effective alternative in bypassing oxidation of a silver film. Based on our finding that the sensor sensitivity is strongly correlated with the slope of dispersion curves, SPR sensing results obtained by parylene film deposition shows that TiO2/silver hybrid substrates provide notable sensitivity improvement compared to a conventional bare silver film, which confirms the possibility of engineering the dispersion characteristic according to the incidence wavelength. The reported SPR structures with TiO2 films enhance the sensitivity significantly in water and air environments and its overall qualitative trend in sensitivity improvement is consistent with numerical simulations. Thus, we expect that our approach can extend the applicability of TiO2-mediated SPR biosensors to highly sensitive detection for biomolecular binding events of low concentrations, while serving a practical and reliable biosensing platform.

3.
Appl Opt ; 53(10): 2152-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24787174

RESUMO

In this study, we investigated the performance improvement of a localized surface plasmon resonance (LSPR) biosensor by incorporating a metal-dielectric-metal (MDM) stack structure and subwavelength metallic nanograting. The numerical results showed that the LSPR substrate with a MDM stack can provide not only a better sensitivity by more than five times but also a notably improved signal quality. While the gold nanogratings on a gold film inevitably lead to a broad and shallow reflectance curve, the presence of a MDM stack can prevent propagating surface plasmons from interference by locally enhanced fields excited at the gold nanogratings, finally resulting in a strong and deep absorption band at resonance. Therefore, the proposed LSPR structure could potentially open a new possibility of enhanced detection for monitoring biomolecular interactions of very low molecular weights.


Assuntos
Biopolímeros/análise , Técnicas Biossensoriais/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teste de Materiais , Espalhamento de Radiação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA