Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402938, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113331

RESUMO

With the rapid development of electronic industry, it's pressing to develop multifunctional electromagnetic interference (EMI) shielding materials to ensure the stable operation of electronic devices. Herein, multilayered flexible PEG@PAN/MXene (Ti3C2Tx)/PVDF@SiO2 (PMF) composite film has been constructed from the level of microstructure design via coaxial electrospinning, coating spraying, and uniaxial electrospinning strategies. Benefiting from the effective encapsulation for PEG and high conductivity of MXene coating, PEG@PAN/MXene composite film with MXene coating loading density of 0.70 mg cm-2 exhibits high thermal energy storage density of 120.77 J g-1 and great EMI shielding performance (EMI SE of 34.409 dB and SSE of 49.086 dB cm3 g-1) in X-band (8-12 GHz). Therefore, this advanced composite film can not only help electronic devices prevent the influence of electromagnetic pollution in the X-band but also play an important role in electronic device thermal management. Additionally, the deposition of nano PVDF@SiO2 fibers (289 ± 128 nm) endowed the PMF composite film with great hydrophobic properties (water contact angle of 126.5°) to ensure the stable working of hydrophilic MXene coating, thereby breaks the limitation of humid application environments. The finding paves a new way for the development of novel multifunctional EMI shielding composite films for electronic devices.

2.
Biosens Bioelectron ; 261: 116498, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878697

RESUMO

The World Anti-Doping Agency (WADA) has prohibited the use of clenbuterol (CLN) because it induces anabolic muscle growth while potentially causing adverse effects such as palpitations, anxiety, and muscle tremors. Thus, it is vital to assess meat quality because, athletes might have positive test for CLN even after consuming very low quantity of CLN contaminated meat. Numerous materials applied for CLN monitoring faced potential challenges like sluggish ion transport, non-uniform ion/molecule movement, and inadequate electrode surface binding. To overcome these shortcomings, herein we engineered bimetallic zeolitic imidazole framework (BM-ZIF) derived N-doped porous carbon embedded Co nanoparticles (CN-CoNPs), dispersed on conductive cellulose acetate-polyaniline (CP) electrospun nanofibers for sensitive electrochemical monitoring of CLN. Interestingly, the smartly designed CN-CoNPs wrapped CP (CN-CoNPs-CP) electrospun nanofibers offers rapid diffusion of CLN molecules to the sensing interface through amine and imine groups of CP, thus minimizing the inhomogeneous ion transportation and inadequate electrode surface binding. Additionally, to synchronize experiments, machine learning (ML) algorithms were applied to optimize, predict, and validate voltametric current responses. The ML-trained sensor demonstrated high selectivity, even amidst interfering substances, with notable sensitivity (4.7527 µA/µM/cm2), a broad linear range (0.002-8 µM), and a low limit of detection (1.14 nM). Furthermore, the electrode exhibited robust stability, retaining 98.07% of its initial current over a 12-h period. This ML-powered sensing approach was successfully employed to evaluate meat quality in terms of CLN level. To the best of our knowledge, this is the first study of using ML powered system for electrochemical sensing of CLN.


Assuntos
Técnicas Biossensoriais , Celulose , Clembuterol , Cobalto , Aprendizado de Máquina , Nanofibras , Clembuterol/análise , Nanofibras/química , Técnicas Biossensoriais/métodos , Celulose/química , Celulose/análogos & derivados , Cobalto/química , Animais , Carne/análise , Nanopartículas Metálicas/química , Compostos de Anilina/química , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Limite de Detecção , Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA