Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nat Rev Mol Cell Biol ; 19(6): 349-364, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29618831

RESUMO

Autophagy is a highly conserved catabolic process induced under various conditions of cellular stress, which prevents cell damage and promotes survival in the event of energy or nutrient shortage and responds to various cytotoxic insults. Thus, autophagy has primarily cytoprotective functions and needs to be tightly regulated to respond correctly to the different stimuli that cells experience, thereby conferring adaptation to the ever-changing environment. It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.


Assuntos
Autofagia/fisiologia , Mamíferos/fisiologia , Animais , Humanos , Neoplasias/patologia , Doenças Neurodegenerativas/patologia
2.
Trends Biochem Sci ; 49(7): 569-572, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796312

RESUMO

Autophagy sequesters cytoplasmic portions into autophagosomes. While selective cargo is engulfed by elongation of cup-shaped isolation membranes (IMs), the morphogenesis of non-selective IMs remains elusive. Based on recent observations, we propose a novel model for autophagosome morphogenesis wherein active regulation of the IM rim serves the physiological roles of autophagy.


Assuntos
Autofagossomos , Autofagia , Morfogênese , Autofagossomos/metabolismo , Animais , Humanos
3.
Annu Rev Biochem ; 80: 125-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21548784

RESUMO

Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.


Assuntos
Autofagia/fisiologia , Fagossomos/química , Fagossomos/metabolismo , Animais , Biomarcadores/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Organelas/metabolismo , Organelas/ultraestrutura , Fagossomos/ultraestrutura , Transdução de Sinais/fisiologia , Leveduras/citologia , Leveduras/fisiologia
4.
EMBO J ; 41(23): e110771, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300838

RESUMO

Autophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy. We reveal for the first time that genetic loss of PC biosynthesis via the CDP-DAG pathway leads to changes in lipid composition of autophagic membranes, specifically replacement of PC by phosphatidylserine (PS). This impairs closure of the autophagic membrane and autophagic flux. Consequently, we show that choline-dependent recovery of de novo PC biosynthesis via the CDP-choline pathway restores autophagosome formation and autophagic flux in PC-deficient cells. Our findings therefore implicate phospholipid metabolism in autophagosome biogenesis.


Assuntos
Autofagossomos , Fosfolipídeos , Autofagossomos/metabolismo , Fosfolipídeos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Colina/metabolismo , Cistina Difosfato/metabolismo
5.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 119(17): e2119644119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439056

RESUMO

Missense mutations in the p53 tumor suppressor abound in human cancer. Common ("hotspot") mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53. To elucidate transcription-independent effects of mutp53, we characterized the protein interactome of the p53R273H mutant in cells derived from pancreatic ductal adenocarcinoma (PDAC), where p53R273H is the most frequent p53 mutant. We now report that p53R273H, but not the p53R175H hotspot mutant, interacts with SQSTM1/p62 and promotes cancer cell migration and invasion in a p62-dependent manner. Mechanistically, the p53R273H-p62 axis drives the proteasomal degradation of several cell junction­associated proteins, including the gap junction protein Connexin 43, facilitating scattered cell migration. Concordantly, down-regulation of Connexin 43 augments PDAC cell migration, while its forced overexpression blunts the promigratory effect of the p53R273H-p62 axis. These findings define a mechanism of mutp53 GOF.


Assuntos
Movimento Celular , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Genes p53 , Humanos , Mutação , Neoplasias Pancreáticas/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
EMBO J ; 39(17): e105965, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716584

RESUMO

The endoplasmic reticulum (ER) is a dynamic intracellular network responsible for folding and maturation of organellar and secreted proteins. Selective autophagy of ER (ER-phagy) is emerging as an essential process that maintains proteostasis in the ER and is regulated by growth conditions. In this issue, Cinque et al (2020) show that fibroblast growth factor 18 (FGF18) specifically activates ER-phagy through a TFEB/TFE-dependent transcriptional regulation of the ER-phagy receptor Fam134b, a process essential for bone ossification and skeletal development.


Assuntos
Ursidae , Animais , Autofagia/genética , Retículo Endoplasmático , Proteínas de Membrana
8.
Mol Cell ; 57(1): 1-3, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25574946

RESUMO

Two papers by McEwan et al. (McEwan et al., 2015a, 2015b) identify interactions of PLEKHM1 with autophagosome-associated Atg8 proteins and Salmonella typhimurium effector, SifA, linking autophagy and the Salmonella-containing vacuole (SCV) to the endolysosomal Rab7/HOPS-regulated tethering machinery.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Lisossomos/metabolismo , Fusão de Membrana/genética , Glicoproteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas Relacionadas à Autofagia , Humanos
9.
Mol Cell ; 60(1): 89-104, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431026

RESUMO

Hereditary spastic paraplegias (HSPs) are a diverse group of neurodegenerative diseases that are characterized by axonopathy of the corticospinal motor neurons. A mutation in the gene encoding for Tectonin ß-propeller containing protein 2 (TECPR2) causes HSP that is complicated by neurological symptoms. While TECPR2 is a human ATG8 binding protein and positive regulator of autophagy, the exact function of TECPR2 is unknown. Here, we show that TECPR2 associates with several trafficking components, among them the COPII coat protein SEC24D. TECPR2 is required for stabilization of SEC24D protein levels, maintenance of functional ER exit sites (ERES), and efficient ER export in a manner dependent on binding to lipidated LC3C. TECPR2-deficient HSP patient cells display alterations in SEC24D abundance and ER export efficiency. Additionally, TECPR2 and LC3C are required for autophagosome formation, possibly through maintaining functional ERES. Collectively, these results reveal that TECPR2 functions as molecular scaffold linking early secretion pathway and autophagy.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Paraplegia Espástica Hereditária/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Células HeLa , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Paraplegia Espástica Hereditária/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
J Biol Chem ; 297(5): 101339, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688664

RESUMO

Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Transdução de Sinais , Ubiquitinação , Animais , Mitocôndrias/genética , Proteínas Mitocondriais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA