Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(3): e202301890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38252073

RESUMO

In this investigation, the study focused on the chemical constitution and the antioxidative as well as anti-inflammatory characteristics of oils and pulpy variants (Imatchan (IM), Harmocha (HA), and Aknari (AK)) sourced from O. dillenii. This inquiry encompassed both in vitro and in silico analyses. High-performance liquid chromatography (HPLC) was employed to ascertain the phenolic constituents, while gas chromatography-mass spectrometry (GC-MS) methodologies. were applied to discern the volatile makeup. The appraisal of antioxidant potential was conducted via the deployment of assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and ferric ion chelating (FIC) techniques. The anti-inflammatory activity was examined using BSA and LOX. Molecular docking methods assessed the antioxidant and anti-inflammatory properties. According to HPLC findings, the most abundant compounds detected in AKO and IMO cultivars were quercetin 3-O-ß-D-glucoside followed by vanillic acid, ferulic acid and tyrolsol. Concerning headspace GC-MS analysis E-11-hexadecenal and (E)-2-undecenal contribute to the major compounds detected in Opuntia HA, IM, and AK pulp and oil. The DPPH IC50 for AK, HA and IM were 38.41±1.54, 42.24±0.29 and 15.17±1.28 mg/mL, respectively. The FRAP IC50 capacity of AK, HA and IM was determined to be 30.23±0.6, 55.96±0.08 and 23.41±1.83 mg/mL, respectively. AK, HA and IM displayed significant FIC activity, with IC50 values of 42.75±0.63, 39.54±0.59 and 35.31±1.38 mg/mL, respectively. The AK, HA and IM O. dillenii oils were effective in their anti-inflammatory activity. Molecular docking of O. dillenii oils phenolic compounds was conducted to determine the possible targeted proteins by the phenolic compounds in O. dillenii's compounds. Overall, these fruits demonstrated the potential for new ingredients for culinary or pharmaceutical applications, providing value to these natural species that can flourish in arid conditions.


Assuntos
Antioxidantes , Opuntia , Antioxidantes/farmacologia , Antioxidantes/química , Opuntia/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Fenóis/farmacologia , Óleos
2.
Med Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659270

RESUMO

INTRODUCTION: Inflammatory Bowel Disease (IBD) encompasses a group of chronic disorders distinguished by inflammation of the gastrointestinal tract. Among these, Crohn's Disease (CD) stands out as a complex and impactful condition due to challenges for both diagnosis and management, making it a cynosure of research. METHOD: In CD, there is the predominance of proinflammatory bacteria, including the Adherentinvasive Escherichia coli (AIEC) with virulence-associated metabolic enzyme Propanediol Dehydratase (pduC), which has been identified as a therapeutic target for the management of CD. Herein, molecular modeling techniques, including molecular docking, Molecular Mechanics with Generalized Born and Surface Area (MMGBSA), drug-likeness, and pharmacokinetics profiling, were utilized to probe the potentials of eighty antibacterial compounds to serve as inhibitors of pduC. RESULT: The results of this study led to the identification of five compounds with promising potentials; the results of the molecular docking simulation revealed the compounds as possessing better binding affinities for the target compared to the standard drug (sulfasalazine), while Lipinski's rule of five-based assessment of their drug-likeness properties revealed them as potential oral drugs. MMGBSA free energy calculation and Molecular Dynamics (MD) simulation of the complexes formed a sequel to molecular docking, revealing the compounds as stable binders in the active site of the protein. CONCLUSION: Ultimately, the results of this study have revealed five compounds to possess the potential to serve as inhibitors of pduC of AIEC. However, experimental studies are still needed to validate the findings of this study.

3.
Front Chem ; 12: 1334028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435667

RESUMO

Cistus albidus: L., also known as Grey-leaved rockrose and locally addressed as stab or tûzzâla lbîda, is a plant species with a well-established reputation for its health-promoting properties and traditional use for the treatment of various diseases. This research delves into exploring the essential oil extracted from the aerial components of Cistus albidus (referred to as CAEO), aiming to comprehend its properties concerning antioxidation, anti-inflammation, antimicrobial efficacy, and cytotoxicity. Firstly, a comprehensive analysis of CAEO's chemical composition was performed through Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, four complementary assays were conducted to assess its antioxidant potential, including DPPH scavenging, ß-carotene bleaching, ABTS scavenging, and total antioxidant capacity assays. The investigation delved into the anti-inflammatory properties via the 5-lipoxygenase assay and the antimicrobial effects of CAEO against various bacterial and fungal strains. Additionally, the research investigated the cytotoxic effects of CAEO on two human breast cancer subtypes, namely, MCF-7 and MDA-MB-231. Chemical analysis revealed camphene as the major compound, comprising 39.21% of the composition, followed by α-pinene (19.01%), bornyl acetate (18.32%), tricyclene (6.86%), and melonal (5.44%). Notably, CAEO exhibited robust antioxidant activity, as demonstrated by the low IC50 values in DPPH (153.92 ± 4.30 µg/mL) and ß-carotene (95.25 ± 3.75 µg/mL) assays, indicating its ability to counteract oxidative damage. The ABTS assay and the total antioxidant capacity assay also confirmed the potent antioxidant potential with IC50 values of 120.51 ± 3.33 TE µmol/mL and 458.25 ± 3.67 µg AAE/mg, respectively. In terms of anti-inflammatory activity, CAEO displayed a substantial lipoxygenase inhibition at 0.5 mg/mL. Its antimicrobial properties were broad-spectrum, although some resistance was observed in the case of Escherichia coli and Staphylococcus aureus. CAEO exhibited significant dose-dependent inhibitory effects on tumor cell lines in vitro. Additionally, computational analyses were carried out to appraise the physicochemical characteristics, drug-likeness, and pharmacokinetic properties of CAEO's constituent molecules, while the toxicity was assessed using the Protox II web server.

4.
Front Chem ; 12: 1383731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660570

RESUMO

Introduction: This study investigates the biological activities of Lavandula pinnata essential oil (LPEO), an endemic lavender species from the Canary Islands, traditionally used in treating various ailments. Methods: LPEO was extracted by hydrodistillation and analyzed using GC-MS. Antioxidant activity was assessed by DPPH radical scavenging and total antioxidant capacity assays. Antimicrobial activity was evaluated by disc diffusion, MIC, MBC, and MFC determination against bacterial (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa) and fungal (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, Penicillium digitatum) strains. Antidiabetic and anti-gout potential were investigated through α-amylase, α-glucosidase, and xanthine oxidase inhibition assays. Antityrosinase activity was determined using a modified dopachrome method. Cytotoxicity was assessed by MTT assay against breast (MCF-7, MDA-MB-468), liver (HepG2), colon (HCT-15) cancer cells, and normal cells (PBMCs). Results and discussion: LPEO exhibits potent antiradical activity (IC50 = 148.33 ± 2.48 µg/mL) and significant antioxidant capacity (TAC = 171.56 ± 2.34 µg AA/mg of EO). It demonstrates notable antibacterial activity against four strains (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa) with inhibition zones ranging from 18.70 ± 0.30 mm to 29.20 ± 0.30 mm, along with relatively low MIC and MBC values. LPEO displays significant antifungal activity against four strains (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, and Penicillium digitatum) with a fungicidal effect at 1 mg/mL, surpassing the positive control (cycloheximide), and MIC and MFC values indicating a fungicidal effect. It exhibits substantial inhibition of xanthine oxidase enzyme (IC50 = 26.48 ± 0.90 µg/mL), comparable to allopurinol, and marked inhibitory effects on α-amylase (IC50 = 31.56 ± 0.46 µg/mL) and α-glucosidase (IC50 = 58.47 ± 2.35 µg/mL) enzymes.The enzyme tyrosinase is inhibited by LPEO (IC50 = 29.11 ± 0.08 mg/mL). LPEO displays moderate cytotoxic activity against breast, liver, and colon cancer cells, with low toxicity towards normal cells (PBMC). LPEO exhibits greater selectivity than cisplatin for breast (MCF-7) and colon (HCT-15) cancer cells but lower selectivity for liver (HepG2) and metastatic breast (MDA-MB-468) cancer cells. These findings suggest the potential of LPEO as an antioxidant, antimicrobial, anti-gout, antidiabetic, and anticancer agent.

5.
Heliyon ; 10(8): e29459, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699706

RESUMO

The aim of this study is to explore the pharmacological properties of the essential oil derived from Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidiabetic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic alternative for various health conditions. To achieve this, phytochemical analysis was conducted using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were conducted to investigate PVEO's antidiabetic activity by inhibiting α-amylase, xanthine oxidase, and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti-tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-terpinene, 22.40 % carvacrol, and 19.77 % ß-cymene. Moreover, in vitro evaluations demonstrated that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 µg/mL, and remarkable lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Additionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, two inflammatory mediators implicated in various pathologies, without compromising cellular viability. The findings of this study provide a solid foundation for future research on natural therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in the treatment of gout, diabetes, pigmentation disorders, and inflammation.

6.
Heliyon ; 10(11): e31922, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947443

RESUMO

Mentha pulegium L., a plant widely embraced for its therapeutic properties by populations worldwide, including Morocco, has long been recognized for its potential in treating various ailments. This study aims to comprehensively evaluate the antioxidant, anti-inflammatory, and dermatoprotective properties of essential oil derived from M. pulegium, and thyme honey as well as their combined effects. To unravel the chemical composition, a rigorous GC-MS analysis was conducted. Subsequently, we examined their antioxidant potential through three distinct assays: DPPH●, hydrogen peroxide assay, and xanthine oxidase assay. The anti-inflammatory properties were scrutinized through both in vitro and in vivo experiments. Simultaneously, the dermatoprotective efficacy was investigated in vitro by evaluating tyrosinase inhibition. Our findings revealed that pulegone constitutes the predominant compound in M. pulegium essential oil (MPEO), constituting a remarkable 74.82 % of the composition. Significantly, when the essential oil was combined with thym honey, it exhibited superior anti-inflammatory and dermatoprotective effects across all in vivo and in vitro tests. Moreover, our in silico molecular docking analysis hinted at the potential role of cyclohexanone, 3-methyl, an element found in the MPEO, in contributing to the observed outcomes. While this study has unveiled promising results regarding the combined in vitro, in vivo and in silico biological activities of the essential oil and honey, it is imperative to delve further into the underlying mechanisms through additional experimentation and alternative experimental methods. Understanding these mechanisms in greater detail will not only enhance our comprehension of the therapeutic potential but also pave the way for the development of innovative treatments and applications rooted in the synergy of these natural compounds. Furthermore, it would be advantageous to test different possible combinations using experimental design model. Moreover, it would be better to test the effect of single compounds of MPEO to clearly elucidate their efficiency. MPEO alone or combined with thyme honey may be a useful for the development of novel biopharmaceuticals.

7.
Food Sci Nutr ; 12(6): 4248-4258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873451

RESUMO

This research investigates citric acid (CA) synthesis using the indigenous strain Aspergillus niger ASP26, which was isolated from date by-products. The study initially involved isolating fungi capable of CA production and identifying the most potent strain based on its characteristic enzymatic activity. A. niger ASP26 was acknowledged in a previous study for its remarkable ability to produce extracellular enzymes, such as cellulase and amylase, which enable it to degrade organic materials effectively. After the identification phase, these isolates were screened for CA production using a modified Czapek-Dox medium. The research identified significant factors affecting CA production in submerged fermentation, including pH, carbon source, inoculum size, and fermentation time. Optimal conditions were determined for A. niger ASP26, resulting in a maximum CA yield of 16.89 g/L. These conditions included a 2.5% spore suspension at 2 × 107 spores/mL, an initial glucose concentration of 125 g/L, and incubation at 30°C for 144 h. Notably, A. niger ASP26 demonstrated the ability to produce CA under stress conditions as well. Citric acid is essential for various biological processes, such as cellular respiration, and is naturally present in citrus fruits. It also serves as a preservative and flavor enhancer in processed foods and beverages. The ability of A. niger ASP26 to produce CA from agricultural residues positions it as a viable candidate for sustainable CA production, harnessing the value from organic waste materials.

8.
Heliyon ; 10(15): e34135, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170293

RESUMO

Medicinal plants have been utilized for centuries in traditional medicine systems worldwide, providing a rich source of bioactive compounds with diverse biological activities. Lavandula officinalis, a member of the Lamiaceae family, has been recognized for its multifaceted pharmacological activities. In this current investigation, our primary objective was to scrutinize the in vitro inhibitory potential of L. officinalis essential oil (LOEO) against alpha-amylase and alpha-glucosidase, with the aim of understanding its antidiabetic effects. Additionally, the assay encompassed tyrosinase and lipoxygenase (LOX) to assess its anti-inflammatory attributes. Unraveling the underlying molecular mechanisms of these activities prompted an in-silico study. The purpose was to establish correlations between in-vitro observations and computational insights derived from molecular docking, which forecasts the interaction of LOEO molecules with their respective targets, alongside ADMET prediction. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis allow to identify eighteen compounds, with the dominance of L-camphor (43.12 %), 1,8-cineole (34.27 %) and borneol (8.60 %) in LOEO. The antidiabetic evaluation revealed that LOEO exhibited noteworthy inhibitory activity against both α-amylase and α-glucosidase, displaying IC50 values of 3.14 ± 0.05 mg/mL and 2.07 ± 0.03 mg/mL, respectively. The subsequent in-silico study highlighted the particularly strong binding affinity of (E)-Farnesene, with a binding score of -7.4 kcal/mol for alpha-glucosidase, while Germacrene D displayed the highest affinity among the ligands (-7.9 kcal/mol) for the alpha-amylase target. Furthermore, the investigation into in vitro anti-inflammatory activity unveiled LOEO efficacy against tyrosinase (IC50 = 42.74 µg/mL) and LOX (IC50 = 11.58 ± 0.07 µg/mL). The in-silico analysis echoed these findings, indicating α-Cadinene's notable binding affinity of 6 kcal/mol with tyrosinase and α-Cedrene's binding score of -6.5 kcal/mol for LOX. Impressively, for both COX-1 and COX-2, α-Cedrene exhibited significant binding affinities of -7.6 and -7.3 kcal/mol, respectively. The convergence between the in vitro and in silico outcomes underscores the potential of LOEO and its constituent compounds as potent inhibitors targeting both diabetes and the inflammatory processes.

9.
Scientifica (Cairo) ; 2024: 5558041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135848

RESUMO

The aim of this study was to determine the phytochemical composition and evaluate the antifungal and insecticidal properties of Rosmarinus officinalis essential oil (EO). GC-MS was employed to analyze the phytochemical profile of the EO. The antifungal activity of the EO was assessed by calculating growth inhibition rates for Alternaria alternata, Fusarium oxysporum, and Botrytis cinerea. Repellent capacity and toxicity were evaluated through inhalation and contact tests on Callosobruchus maculatus. Molecular docking techniques were utilized to test the insecticidal and antifungal activities of rosemary EO. The analysis revealed a total of sixteen components in R. officinalis EO, with 1,8-cineole (40.80%) being the major constituent, followed by α-pinene (26.18%) and camphor (19.53%). Antifungal evaluation demonstrated a significant inhibitory impact on the mycelial growth of the tested fungi, with complete inhibition observed against B. cinerea. In terms of insecticidal capacity, the EO induced complete mortality of C. maculatus adults at a concentration of 1 µL/L air, with an inhalation test LC50 value of 0.62 µL/L air. Concentration-dependent reductions were observed in the number of both laid eggs and emerged insects, reaching a 99.36% reduction. The EO also exhibited a moderate effectiveness in repelling insects, with an average repellency rate of 50.83%. In silico analysis identified borneol as the most active molecule against insect acetylcholinesterase (PDB: 6ARY) with a Glide score of -7.254 kcal/mol. α-Caryophyllene showed the highest activity against B. cinerea ß-tubulin (PDB: 3N2G) with a Glide score of -7.025 kcal/mol. These findings suggest that the EO derived from Moroccan Rosmarinus officinalis has potential as an effective natural agent against pathogenic fungi and could serve as a sustainable and environmentally friendly alternative as a bioinsecticide.

10.
Heliyon ; 10(1): e23084, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169772

RESUMO

Tetraclinis articulata is a known traditional medicinal plant used to manage various ailments, such as diabetes, rheumatism and infectious diseases. This study aims to determine the chemical constituents of T. articulata essential oil (EO) and to evaluate its in vitro antibacterial, anti-candidal, antioxidant, anti-inflammatory and dermatoprotective properties. In addition, a computational docking approach was used to predict the potential antioxidant, antibacterial, antifungal, anti-inflammatory, and cytotoxic properties of the identified compounds. The volatile oil obtained by hydrodistillation was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of T. articulata EO was investigated using three complementary assays: DPPH, ABTS and FRAP. Lipoxygenase (5-LOX) and tyrosinase enzymes were used to assess the anti-inflammatory and dermatoprotective effects of this oil. Moreover, disc-diffusion technique, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were employed for the antimicrobial screening. The GC-MS analysis revealed that bornyl acetate (41.80 %), α-pinene (17.97 %) and camphor (15.97 %) are the major components of the studied EO. Moreover, T. articulata EO has exhibited promising antioxidant effect on FRAP, DPPH, and ABTS experiments. It also significantly inhibited 5-LOX (IC50 = 67.82 ± 0.03 µg/mL) and tyrosinase (IC50 = 211.93 ± 0.02 µg/mL). The results of MIC and MBC assays indicated that T. articulata EO is able to inhibit the growth of all tested bacteria (Gram + and Gram -) and Candida species. The ratio of tolerance level indicated that the tested oil was bactericidal against the Gram + bacteria and Candida species, whereas it has a bacteriostatic behavior against the Gram- bacteria. In light of these findings, T. articulata EO may be suggested as a potential pharmaceutical agent to prevent inflammation and skin problems and may serve as a natural antimicrobial and antioxidant alternative for sustainable application in food products.

11.
Front Chem ; 11: 1341704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313220

RESUMO

Our research focused on assessing essential oils (MSEO) and aqueous extracts (MSAE) derived from M. subtomentella leaves, with a primary focus on evaluating their properties. From 1 kg of leaves, we successfully obtained 18 mL of essential oil. Upon conducting GC/MS analysis, we identified eleven compounds within the oil, collectively accounting for 100% of the constituents identified. Notably, the predominant compounds in the leaf oil were p-Menth-48) -en-3-one (50.48%), 9-Ethylbicyclo (3.3.1) nonan-9-ol (10.04%) (E)-3,3-Dimethyl-delta-1, alpha-cyclohexaneacetaldehyde (8.53%), and D-Limonene (7.22%). Furthermore, utilizing HPLC/DAD, we explored the phenolic profile of MSAE, extracted through decoction. This analysis revealed the presence of fifty-eight compounds, with five major components collectively constituting 61% of the total compounds identified, rosmarinic acid as the major one. We evaluated the antimicrobial effectiveness of the MSEO against ten different strains, observing its notable efficacy against A. Niger (MIC = 0.09%), P. digitatum (MIC = 0.5%), and G. candidum (MIC = 1%). However, the essential oil demonstrated comparatively lower efficacy against bacteria than fungi. In contrast, the MSAE did not exhibit any antimicrobial activity against the tested strains. Regarding antioxidant activity, the aqueous extract displayed a significantly higher antioxidant capacity than the essential oil, which exhibited relatively lower antioxidant activity. The IC50 values were determined to be 0.04 ± 0.01 mg/mL, 0.17 ± 0.01 mg/mL, and 13% ± 0.01% (V/V), for ascorbic acid MSAE and MSEO, respectively. We used a computational method called molecular docking to investigate how certain plant compounds affect antioxidant, antibacterial, and antifungal activities. This involved analyzing the interactions between these compounds and specific protein targets known for their roles in these activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA