Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365868

RESUMO

Motion capture is the current gold standard for assessing movement of the human body, but laboratory settings do not always mimic the natural terrains and movements encountered by humans. To overcome such limitations, a smart sock that is equipped with stretch sensors is being developed to record movement data outside of the laboratory. For the smart sock stretch sensors to provide valuable feedback, the sensors should have durability of both materials and signal. To test the durability of the stretch sensors, the sensors were exposed to high-cycle fatigue testing with simultaneous capture of the capacitance. Following randomization, either the fatigued sensor or an unfatigued sensor was placed in the plantarflexion position on the smart sock, and participants were asked to complete the following static movements: dorsiflexion, inversion, eversion, and plantarflexion. Participants were then asked to complete gait trials. The sensor was then exchanged for either an unfatigued or fatigued plantarflexion sensor, depending upon which sensor the trials began with, and each trial was repeated by the participant using the opposite sensor. Results of the tests show that for both the static and dynamic movements, the capacitive output of the fatigued sensor was consistently higher than that of the unfatigued sensor suggesting that an upwards drift of the capacitance was occurring in the fatigued sensors. More research is needed to determine whether stretch sensors should be pre-stretched prior to data collection, and to also determine whether the drift stabilizes once the cyclic softening of the materials comprising the sensor has stabilized.


Assuntos
Tornozelo , Movimento , Humanos , Articulação do Tornozelo , Movimento (Física) , Marcha , Fenômenos Biomecânicos
2.
Vet Surg ; 48(7): 1318-1329, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31291009

RESUMO

OBJECTIVE: To determine the influence of short-term administration of carprofen on bone healing in dogs. STUDY DESIGN: Randomized controlled experimental study. ANIMALS: Eighteen purpose-bred sexually mature hound dogs. METHODS: Tibial osteotomies were performed, and dogs were divided into three groups: no carprofen (n = 6), 2-week administration of carprofen at 2.2 mg/kg twice daily (n = 6), and 8-week administration of carprofen at 2.2 mg/kg twice daily (n = 5). Bone healing was evaluated radiographically at 4 and 8 weeks postoperatively. Postmortem, fracture healing was assessed via biomechanical testing (three-point bending), histological cartilage:callus ratio, and bone mineral density (BMD) with quantitative computed tomography. RESULTS: No biomechanical difference was detected between dogs that received no carprofen and those that received 2 weeks of carprofen or between those that received 2 weeks vs 8 weeks of carprofen. Stiffness (P = .035) and maximum stress (P = .042) were higher in dogs that received no carprofen than in those that received 8 weeks of carprofen. Radiographic healing did not differ between dogs without carprofen and those with 2-week administration of carprofen (P = .9923). However, tibias of dogs without carprofen and those with 2-week administration of carprofen were more healed compared with those in the 8-week-carprofen group at 4 and 8 weeks after surgery (P = .0011). No treatment effect was detected by cartilage:callus ratio or BMD. CONCLUSION: Long-term administration of carprofen had a negative effect on bone healing compared with short-term or no administration of carprofen. CLINICAL SIGNIFICANCE: Nonsteroidal anti-inflammatory drugs should be used cautiously in dogs at risk for delayed bone healing, and administration should be discontinued beyond the perioperative period in dogs with fractures or osteotomies.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Carbazóis/administração & dosagem , Consolidação da Fratura/efeitos dos fármacos , Osteotomia/veterinária , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Fenômenos Biomecânicos , Densidade Óssea , Calo Ósseo , Carbazóis/uso terapêutico , Cartilagem , Cães , Esquema de Medicação , Tíbia/cirurgia
3.
BMC Vet Res ; 13(1): 222, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705189

RESUMO

BACKGROUND: Fracture of the ilium is common orthopedic injury that often requires surgical stabilization in canine patients. Of the various methods of surgical stabilization available, application of a lateral bone plate to the ilium is the most common method of fixation. Many plating options are available, each having its own advantages and disadvantages. The purpose of this study was to evaluate the biomechanical properties of a 3.5 mm String-of-Pearls™ plate and a 3.5 mm dynamic compression plate in a cadaveric canine ilial fracture model. Hemipelves were tested in cantilever bending to failure and construct stiffness, yield load, displacement at yield, ultimate load, and mode of failure were compared. RESULTS: The mean stiffness of dynamic compression plate (116 ± 47 N/mm) and String-of-Pearls™ plate (107 ± 18 N/mm) constructs, mean yield load of dynamic compression plate (793 ± 333 N) and String-of-Pearls™ plate (860 ± 207 N) constructs, mean displacement at yield of dynamic compression plate (8.6 ± 3.0 mm) and String-of-Pearls™ plate (10.2 ± 2.8 mm) constructs, and ultimate load at failure of dynamic compression plate (936 ± 320 N) and String-of-Pearls™ plate (939 ± 191 N) constructs were not significantly different. No differences were found between constructs with respect to mode of failure. CONCLUSIONS: No significant biomechanical differences were found between String-of-Pearls™ plate and dynamic compression plate constructs in this simplified cadaveric canine ilial fracture model.


Assuntos
Placas Ósseas/veterinária , Cães/lesões , Fraturas Ósseas/veterinária , Ílio/lesões , Animais , Fenômenos Biomecânicos , Cães/cirurgia , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/veterinária , Fraturas Ósseas/cirurgia , Ílio/cirurgia , Falha de Prótese , Estresse Mecânico
4.
Vet Surg ; 46(1): 59-66, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27805732

RESUMO

OBJECTIVE: To compare the biomechanical strength and histologic features of 3-0 Glycomer™ 631 barbed suture (V-LOC™ 90 Absorbable Wound Closure Device, Covidien, Mansfield, MA) to non-barbed 3-0 Glycomer™ 631 suture (Biosyn™, Covidien) for intradermal skin wound closure in the dog. STUDY DESIGN: Randomized, factorial, in vivo. ANIMALS: Eighteen purpose-bred, mature male, and female hound dogs. METHODS: Eighteen adult hound dogs were randomly assigned to 1 of 3 groups designated by postoperative day of assessment. Six skin incisions were made along the dorsum in the thoracolumbar region of each dog with an equal number (n=3) randomly assigned to closure with barbed or non-barbed suture. Six dogs were euthanatized on postoperative days 3, 10, and 14, respectively. Two additional incisions were made on each dog after euthanasia for baseline data (Day 0). The skin incision specimens were harvested for biomechanical testing and histologic evaluation. RESULTS: Non-barbed closure had significantly higher maximum load at failure (P<.001) and stiffness (P<.001) than barbed closure regardless of day. The average tissue reaction score was significantly higher for barbed closure (P=.008), regardless of day. Suturing time for barbed closures was significantly shorter. There was no significant difference in frequency of complications between closures. CONCLUSION: Barbed Glycomer™ 631 closures had a significantly lower maximum load at failure and stiffness, and higher average tissue reaction scores, but showed no difference in short term outcome for intradermal closure of dorsally located skin incisions in dogs.


Assuntos
Cães/cirurgia , Pele/patologia , Técnicas de Sutura/veterinária , Suturas/veterinária , Cicatrização , Animais , Fenômenos Biomecânicos , Procedimentos Cirúrgicos Dermatológicos/veterinária , Feminino , Masculino , Teste de Materiais
5.
Int J Pharm ; 652: 123842, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266943

RESUMO

Due to efficient drainage of the joint, the development of intra-articular depots for long-lasting drug release is a difficult challenge. Moreover, a disease-modifying osteoarthritis drug (DMOAD) that can effectively manage osteoarthritis has yet to be identified. The current study was undertaken to explore the potential of injectable, in situ forming implants to create depots that support the sustained release of punicalagin, a promising DMOAD. In vitro experiments demonstrated punicalagin's ability to suppress production of interleukin-1ß and prostaglandin E2, confirming its chondroprotective properties. Regarding the entrapment of punicalagin, it was demonstrated by LC-MS/MS to be stable within PLGA in situ forming implants for several weeks and capable of inhibiting collagenase upon release. In vitro punicalagin release kinetics were tunable through variation of solvent, PLGA lactide:glycolide ratio, and polymer concentration, and an optimized formulation supported release for approximately 90 days. The injection force of this formulation steadily increased with plunger advancement and higher rates of advancement were associated with greater forces. Although the optimal formulation was highly cytotoxic to primary chondrocytes if cells were exposed immediately or shortly after implant formation, upwards of 70 % survival was achieved when the implants were first allowed to undergo a 24-72 h period of phase inversion prior to cell exposure. This study demonstrates a PLGA-based in situ forming implant for the controlled release of punicalagin. With modification to address cytotoxicity, such an implant may be suitable as an intra-articular therapy for OA.


Assuntos
Taninos Hidrolisáveis , Osteoartrite , Espectrometria de Massas em Tandem , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cromatografia Líquida , Osteoartrite/tratamento farmacológico , Implantes de Medicamento
6.
Biomed Eng Adv ; 52023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37424696

RESUMO

Long-term dental implant success is dependent on biocompatibility and osseointegration between the bone and the implant. Surface modifications such as laser-induced microgrooving which increase contact area can enhance osseointegration by establishing and directing a stable attachment between the implant surface and peri-implant bone. The objective of this study was to evaluate pre-osteoblast proliferation, morphology, and differentiation on titanium alloy (Ti64) surfaces-Laser-Lok© (LL), resorbable blast textured (RBT), and machined (M)-compared to tissue culture plastic (TCP) control. We hypothesized the LL surfaces would facilitate increased cellular alignment compared to all other groups, and LL and RBT surfaces would demonstrate enhanced proliferation and differentiation compared to M and TCP surfaces. Surface roughness was quantified using a surface profilometer, and water contact angle was measured to evaluate the hydrophilicity of the surfaces. Cellular function was assessed using quantitative viability and differentiation assays and image analyses, along with qualitative fluorescent (viability and cytoskeletal) imaging and scanning electron microscopy. No differences in surface roughness were observed between groups. Water contact angle indicated LL was the least hydrophilic surface, with RBT and M surfaces exhibiting greater hydrophilicity. Cell proliferation on day 2 was enhanced on both LL and RBT surfaces compared to M, and all three groups had higher cell numbers on day 2 compared to day 1. Cell orientation was driven by the geometry of the surface modification, as cells were more highly aligned on LL surfaces compared to TCP (on day 2) and RBT (on day 3). At day 21, cell proliferation was greater on LL, RBT, and TCP surfaces compared to M, though no differences in osteogenic differentiation were observed. Collectively, our results highlight the efficacy of laser microgrooved and resorbable blast textured surface modifications of Ti64 for enhancing cellular functions, which may facilitate improved osseointegration of dental implants.

7.
J Mater Sci Mater Med ; 23(8): 1835-47, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22584822

RESUMO

Extracellular matrix (ECM) of myocardium plays an important role to maintain a multilayered helical architecture of cardiomyocytes. In this study, we have characterized the structural and biomechanical properties of porcine myocardial ECM. Fresh myocardium were decellularized in a rotating bioreactor using 0.1 % sodium dodecyl sulfate solution. Masson's trichrome staining and SEM demonstrated the removal of cells and preservation of the interconnected 3D cardiomyocyte lacunae. Movat's pentachrome staining showed the preservation of cardiac elastin ultrastructure and vascular elastin distribution/alignment. DNA assay result confirmed a 98.59 % reduction in DNA content; the acellular myocardial scaffolds were found completely lack of staining for the porcine α-Gal antigen; and the accelerating enzymatic degradation assessment showed a constant degradation rate. Tensile and shear properties of the acellular myocardial scaffolds were also evaluated. Our observations showed that the acellular myocardial ECM possessed important traits of biodegradable scaffolds, indicating the potentials in cardiac regeneration and whole heart tissue engineering.


Assuntos
Sistema Livre de Células/química , Sistema Livre de Células/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Miocárdio/química , Miocárdio/ultraestrutura , Alicerces Teciduais , Animais , Teste de Materiais , Resistência ao Cisalhamento , Suínos , Resistência à Tração , Engenharia Tecidual/métodos
8.
Biotechnol Bioeng ; 108(6): 1421-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21274847

RESUMO

Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.


Assuntos
Reatores Biológicos , Cartilagem Articular/metabolismo , Estresse Mecânico , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/ultraestrutura , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Desenho de Equipamento , Proteoglicanas/análise , Proteoglicanas/metabolismo , Suínos
9.
Am J Obstet Gynecol ; 204(4): 365.e25-36, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21324430

RESUMO

OBJECTIVE: The purpose of this study was to biomechanically characterize and compare human, porcine, equine, and ovine fetal membranes. STUDY DESIGN: Noncontact metrology was used for topographic analyses. Uniaxial tensile testing was performed to resolve specific biomechanical values. Puncture force and radial stresses were determined with biaxial puncture testing. Microstructure and surface tortuosity were analyzed histologically. RESULTS: Equine and human membranes sustained larger magnitude loading, but ovine and porcine membranes exhibited stronger material properties. Biaxial puncture validated uniaxial results; human and equine groups accommodated the largest loads but lowest stresses. Equine membranes were mostly vascularized; tortuosity was highest in porcine membranes. Species' gestation length was correlated positively with membrane thickness. CONCLUSION: The anatomy of placentation and length of species gestation show distinct relationships to membrane biomechanics. Unlike other species, human fetal membranes do not compensate for structural weakness with a thicker membrane. This finding may explain the high incidence of preterm premature rupture of membranes in humans.


Assuntos
Membranas Extraembrionárias/fisiologia , Estresse Mecânico , Resistência à Tração/fisiologia , Animais , Membranas Extraembrionárias/ultraestrutura , Feminino , Cavalos , Humanos , Modelos Lineares , Ovinos , Suínos
10.
J Biomed Mater Res B Appl Biomater ; 109(6): 818-828, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33103838

RESUMO

Punicalagin (PA) not only binds type II collagen, but also blocks its MMP-13-mediated degradation, and genipin (GNP) is a collagen cross-linking agent. We hypothesized that these drugs could mitigate the loss of cartilage if administered in the early phase of osteoarthritis, and experiments were designed to provide proof-of-concept. Porcine cartilage was exposed to both drugs in a manner designed to simulate intra-articular (IA) injection. Based on penetration of PA into cartilage, the rate of drug diffusion was conservatively estimated at 2 µm per minute. GNP caused a measurable degree of cross-linking, increased compressive resistance and coefficient of friction, and substantially inhibited degradation by collagenase, but not by hyaluronidase. Pre-incubation of GNP with collagenase had no effect on enzymatic activity. PA did not cross-link collagen nor affect the mechanical properties of cartilage. It did, however, increase resistance to degradation by collagenase and hyaluronidase. Furthermore, it reacted with collagenase in solution and inhibited its subsequent enzymatic activity. Effects of PA and GNP were not additive. The chondroprotective effect of semi-weekly IA injections was investigated in the monoiodoacetate-induced model of OA in rats. Quantitative histology suggested that injection of PA decreased the amount of cartilage lost compared to saline-injected controls, and the addition of GNP made no difference. This study supports the notion that IA delivery of PA could mitigate OA-induced cartilage erosion.


Assuntos
Cartilagem Articular , Taninos Hidrolisáveis/farmacologia , Injeções Intra-Articulares , Iridoides/farmacologia , Osteoartrite/terapia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos , Suínos
11.
J Heart Valve Dis ; 19(1): 86-95; discussion 96, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20329494

RESUMO

BACKGROUND AND AIM OF THE STUDY: Although the vasoactive agents, angiotensin II (Ang II) and 5-hydroxytryptamine (5-HT) are implicated in aortic heart valve disease, it is unclear how these compounds alter the biomechanical properties of valve leaflet tissue. The study aim was to characterize temporal changes in the elastic modulus of tissues incubated with these compounds. METHODS: Valve leaflets were excised from fresh porcine aortic heart valves. Leaflet tissue was incubated with 10(-6) M 5-HT, or 10(-6) M Ang II. The stress and elongation of the tissue in the circumferential and radial directions was measured using a stepper motor-driven micromechanical testing machine at 0.5, 6, and 24 h, followed by calculations of strain and elastic modulus of each sample. RESULTS: Tissue samples incubated with Ang II showed a significant increase in stiffness with time in the radial direction, but not in the circumferential direction. Regression analysis showed a correlation between time and elastic modulus for the tissue (R2 = 0.84). Conversely, leaflets incubated in 5-HT did not show any significant change in elastic modulus over time in the radial direction; however, significant increases in stiffness were observed after 24 h in the circumferential direction. A strong correlation between the elastic modulus in the circumferential direction and time was also noted (R2 = 0.99). CONCLUSION: The study results showed that vasoactive agents are capable of increasing the elastic modulus of aortic valve tissue in a time-dependent manner. Furthermore, the biomechanical changes induced by vasoactive agents are direction-specific, indicating different modes of action.


Assuntos
Angiotensina II/farmacologia , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/fisiologia , Módulo de Elasticidade/fisiologia , Serotonina/farmacologia , Vasoconstritores/farmacologia , Animais , Fenômenos Biomecânicos , Técnicas In Vitro , Microscopia Confocal , Suínos
12.
Vet Dermatol ; 20(5-6): 591-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20178499

RESUMO

Hereditary equine regional dermal asthenia (HERDA) is an autosomal recessive skin disorder that has yet to be fully characterized. HERDA is predominately expressed in Quarter Horses, with the majority of these disseminating from elite cutting horse bloodlines, leading to the increased incidence of HERDA in recent years. Affected horses have loose, hyper-extensible, fragile skin and are frequently euthanized due to poor wound healing and disfiguring scars. This study sought to better characterize HERDA by analysis of the biomechanical parameters of tensile strength, modulus of elasticity, energy to failure and thickness of skin from 10 affected and 6 unaffected horses using an Instron Universal Testing Instrument. In addition, total soluble collagen and glycosaminoglycan concentrations of skin were analysed from 13 affected and 12 unaffected horses using Sircol Soluble Collagen and Blyscan Sulfated Glycosaminoglycan assays respectively. Affected horses exhibited a two to threefold reduction in tensile strength versus unaffected horses with statistically significant differences at six of seven sample locations (P < or = 0.05). The modulus of elasticity proved to be significantly different at six of seven sample locations, energy to failure at six of seven sample locations, and skin thickness at one of seven sample locations (P < or = 0.05). Affected horses exhibited significantly higher amounts of total soluble collagen than unaffected horses (P < or = 0.05). No significant difference was demonstrated between groups for glycosaminoglycan concentration. Affected horses demonstrated uniformly weaker skin across sample locations, indicating the biomechanical properties of HERDA are not regionally confined to specific areas of the horses' skin.


Assuntos
Síndrome de Ehlers-Danlos/fisiopatologia , Doenças dos Cavalos/fisiopatologia , Pele/patologia , Animais , Fenômenos Biomecânicos , Síndrome de Ehlers-Danlos/genética , Doenças dos Cavalos/genética , Cavalos , Resistência à Tração
13.
Am J Vet Res ; 80(9): 852-861, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31449450

RESUMO

OBJECTIVE: To determine whether passage of whole blood through a microaggregate filter by use of a syringe pump would damage canine erythrocytes. SAMPLE: Blood samples obtained from 8 healthy client-owned dogs. PROCEDURES: Whole blood was passed through a standard microaggregate filter by use of a syringe pump at 3 standard administration rates (12.5, 25, and 50 mL/h). Prefilter and postfilter blood samples were collected at the beginning and end of a simulated transfusion. Variables measured at each time point included erythrocyte osmotic fragility, mean corpuscular fragility, RBC count, hemoglobin concentration, RBC distribution width, and RBC morphology. In-line pressure when blood passed through the microaggregate filter was measured continuously throughout the simulated transfusion. After the simulated transfusion was completed, filters were visually analyzed by use of scanning electron microscopy. RESULTS: Regardless of administration rate, there was no significant difference in mean corpuscular fragility, RBC count, hemoglobin concentration, or RBC distribution width between prefilter and postfilter samples. Additionally, there were no differences in in-line pressure during the simulated transfusion among administration rates. Echinocytes were the erythrocyte morphological abnormality most commonly observed at the end of the transfusion at administration rates of 12.5 and 25 mL/h. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that regardless of the administration rate, the microaggregate filter did not alter fragility of canine RBCs, but may have altered the morphology. It appeared that the microaggregate filter would not contribute to substantial RBC damage for transfusions performed with a syringe pump.


Assuntos
Transfusão de Sangue/veterinária , Cães/sangue , Eritrócitos/ultraestrutura , Filtros Microporos/veterinária , Animais , Feminino , Técnicas In Vitro/veterinária , Masculino , Microscopia Eletrônica de Varredura , Seringas/veterinária
14.
Biorheology ; 45(5): 577-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19065006

RESUMO

In this study, we examine the transverse and longitudinal compressive mechanical behavior of the rabbit patellar tendon. The anisotropic compressive properties are of interest, because compression occurs where the tendon attaches to bone and where the tendon wraps around bone leading to the development of fibro-cartilaginous matrices. We quantified the time dependent viscoelastic and anisotropic behavior of the tendon under compression. For both orientations, sections of patellar tendon were drawn from mature male white New Zealand rabbits in preparation for testing. The tendons were sequentially compressed to 40% strain at strain rates of 0.1, 1 and 10% strain(s) using a computer-controlled stepper motor driven device under physiological conditions. Following monotonic loading, the tendons were subjected to stress relaxation. The tendon equilibrium compressive modulus was quantified to be 19.49+/-11.46 kPa for the transverse direction and 1.11+/-0.57 kPa for the longitudinal direction. The compressive modulus at applied strain rates of 0.1, 1 and 10% strain(s) in the transverse orientation were 13.48+/-2.31, 18.24+/-4.58 and 20.90+/-8.60 kPa, respectively. The compressive modulus at applied strain rates of 0.1, 1 and 10% strain/s in the longitudinal orientation were 0.19+/-0.11, 1.27+/-1.38 and 3.26+/-3.49 kPa, respectively. The modulus values were almost significantly different for the examination of the effect of orientation on the equilibrium modulus (p=0.054). Monotonic loading of the tendon showed visual differences of the strain rate dependency; however, no significant difference was shown in the statistical analysis of the effect of strain rate on compressive modulus. The statistical analysis of the effect of orientation on compressive modulus showed a significant difference. The difference shown in the orientation analysis validated the anisotropic nature of the tendon.


Assuntos
Ligamento Patelar/fisiologia , Animais , Anisotropia , Força Compressiva , Elasticidade , Masculino , Coelhos , Estresse Mecânico , Viscosidade
15.
Biorheology ; 45(3-4): 479-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836247

RESUMO

Undifferentiated connective tissue that arises during embryonic development and some healing processes contains pluripotent mesenchymal stem cells. It is becoming increasingly evident that the mechanical environment is an important differentiation factor for these cells. In our laboratory, we have focused on the potential for mechanical signals to induce chondrogenic differentiation of mesenchymal stem cells. Using C3H10T1/2 cells as a model, we have investigated the influence of hydrostatic pressure, equibiaxial contraction, and centrifugal pressure on chondroinduction. Cells responded to cyclic hydrostatic compression (5 MPa at 1 Hz) and cyclic contractile strain (15% at 1 Hz) by upregulating aggrecan and collagen type II gene expression. In addition, a preliminary study of the effects of centrifugal pressure (4.1 MPa for 30 min) suggests that it may increase cell proliferation and stimulate proteoglycan and collagen type II production. We speculate that compression, whether it is distortional or hydrostatic in nature, applied to undifferentiated connective tissue triggers differentiation toward a chondrocyte-like phenotype and production of a less permeable extracellular matrix which is capable of sustaining increasingly higher hydrostatic fluid pressure for compressive load support.


Assuntos
Agrecanas/metabolismo , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Colágeno Tipo II/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoglicanas/metabolismo , Animais , Células Cultivadas , Matriz Extracelular/metabolismo , Pressão Hidrostática , Mecanotransdução Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Pressão , Estresse Fisiológico , Engenharia Tecidual/métodos
16.
J Orthop Res ; 24(4): 740-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16514654

RESUMO

Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA.


Assuntos
Condrócitos/ultraestrutura , Alginatos , Animais , Células Cultivadas , Condrócitos/citologia , Matriz Extracelular/metabolismo , Ácido Glucurônico , Glicosaminoglicanos/análise , Ácidos Hexurônicos , Pressão Hidrostática , Microscopia Eletrônica , Suínos
17.
Vet Comp Orthop Traumatol ; 29(6): 466-474, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27709222

RESUMO

OBJECTIVE: Monocortical screws are commonly employed in locking plate fixation, but specific recommendations for their placement are lacking and use of short monocortical screws in metaphyseal bone may be contraindicated. Objectives of this study were to evaluate axial pullout strength of two different lengths of monocortical screws placed in various regions of the canine humerus compared to bicortical screws, and to derive cortical thickness and bone density values for those regions using quantitative computed tomography analysis (QCT). METHODS: The QCT analysis was performed on 36 cadaveric canine humeri for six regions of interest (ROI). A bicortical, short monocortical, or 50% transcortical 3.5 mm screw was implanted in each ROI and axial pullout testing was performed. RESULTS: Bicortical screws were stronger than monocortical screws in all ROI except the lateral epicondylar crest. Short monocortical metaphyseal screws were weaker than those placed in other regions. The 50% transcortical screws were stronger than the short monocortical screws in the condyle. A linear relationship between screw length and pullout strength was observed. CLINICAL SIGNIFICANCE: Cortical thickness and bone density measurements were obtained from multiple regions of the canine humerus using QCT. Use of short monocortical screws may contribute to failure of locking plate fixation of humeral fractures, especially when placed in the condyle. When bicortical screw placement is not possible, maximizing monocortical screw length may optimize fixation stability for distal humeral fractures.


Assuntos
Parafusos Ósseos/veterinária , Cães/cirurgia , Úmero/cirurgia , Animais , Fenômenos Biomecânicos , Placas Ósseas/veterinária , Diáfises , Úmero/diagnóstico por imagem , Teste de Materiais/veterinária , Tomografia Computadorizada por Raios X/veterinária
18.
Tissue Eng ; 8(6): 1009-16, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12542946

RESUMO

One of the most important factors in any tissue-engineering application is the cell substrate. The purpose of this study was the initial evaluation of chitosan, a derivative of the abundant, naturally occurring biopolymer chitin, as a cell scaffold for cartilage tissue engineering. Chitosan scaffolds having an interconnecting porous structure were easily fabricated by simple freezing and lyophilization of a chitosan solution. After rehydration of scaffolds, porcine chondrocytes were seeded onto scaffolds and cultured for up to 28 days in a rotating-wall bioreactor. Chitosan scaffolds supported cell attachment and maintenance of a rounded cell morphology. After 18 days, cells within the scaffolds had synthesized extracellular matrix in which proteoglycan and type II collagen were detected by toluidine blue staining and immunohistochemistry, respectively. Abundant extracellular matrix was found almost exclusively in the periphery of the scaffolds, as scaffold microstructure prevented cells from penetrating to interior regions. Nonetheless, the results suggest that chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering.


Assuntos
Materiais Biocompatíveis , Cartilagem/fisiologia , Quitosana , Engenharia Tecidual , Animais , Cartilagem/citologia , Adesão Celular/fisiologia , Colágeno Tipo II/metabolismo , Liofilização , Imuno-Histoquímica , Microscopia Confocal , Suínos
19.
Am J Vet Res ; 65(9): 1216-22, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15478768

RESUMO

OBJECTIVE: To objectively evaluate the effect of transecting the tendon of the biceps brachii muscle (BBT), tendon of the infraspinatus muscle (IFS), or medial glenohumeral ligament (MGHL) on shoulder joint stability in canine cadavers. SAMPLE POPULATION: 81 forelimbs from mature dogs. PROCEDURE: Cadaver forelimbs were placed in a testing frame and axially preloaded with 4 kg of weight. Shoulder joint stability was tested in neutral joint position, flexion, and extension before and after transection of the BBT (n = 37), IFS (37), or MGHL (7). Humeral translation relative to the glenoid was induced by applying a 3-kg load in each of 3 directions (cranial, lateral, and medial) and quantitatively measured by use of an electromagnetic motion tracking system. Peak translational data were compared in each joint position before and after transection of the BBT, IFS, or MGHL. RESULTS: When tested in neutral position, the cranial, lateral, and medial translation of the humerus was significantly increased after BBT transection. In the flexed position, translation of the humerus in the cranial and lateral directions was significantly increased after BBT transection. In the extended position, the medial translation of the humerus was significantly increased after BBT transection. Complete medial luxation of all humeral heads occurred following transection of the MGHL. CONCLUSIONS AND CLINICAL RELEVANCE: The BBT contributes to passive shoulder joint stability in dogs, particularly in the neutral and flexed positions. It also provides medial stability during shoulder joint extension. Complete luxation of the joint occurs when the MGHL is transected.


Assuntos
Cães/fisiologia , Instabilidade Articular/fisiopatologia , Ligamentos Articulares/fisiologia , Articulação do Ombro/fisiologia , Traumatismos dos Tendões/fisiopatologia , Tendões/fisiologia , Animais , Fenômenos Biomecânicos , Traumatismos dos Tendões/cirurgia , Suporte de Carga
20.
Am J Vet Res ; 64(7): 845-54, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12856768

RESUMO

OBJECTIVE: To evaluate the effects of a pico-tesla electromagnetic field (PTEF) on healing of sutured and open skin wounds and clinicopathologic variables in rats. ANIMALS: 64 male Fischer-344 rats. PROCEDURE: An incision made in the dorsal aspect of the neck was sutured (n = 32) or left open to heal (32). In each group, 16 rats were not PTEF-treated (controls). Wound treatment consisted of exposure to a PTEF once daily. Rats in each group were euthanatized at days 2, 4, 7, and 14. Wounds were evaluated via tensiometry (sutured wounds), digital planimetry (open wounds), laser Doppler perfusion imaging, bacteriologic culture, and histologic examination. Blood samples were collected from all rats for analysis. RESULTS: At day 14, sutured wounds in PTEF-treated rats were stronger (ultimate stress) and tougher (strain energy) than were sutured wounds in control rats. Open wounds in PTEF-treated rats contracted more quickly at days 2 and 4 than did those in control rats. Compared with control wounds, histologic changes (indicative of improved healing) in sutured and open wounds in PTEF-treated rats were detected as early as day 4. Laser Doppler perfusion measurements, results of CBCs, serum biochemical analyses, and bacteriologic cultures were not different between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Exposure to the PTEF caused no adverse effects on clinicopathologic, histologic, or bacteriologic variables tested in this study. It appears that PTEF is a safe form of adjuvant treatment for wounds and improves strength of sutured wounds and speeds contraction of open wounds.


Assuntos
Campos Eletromagnéticos , Cicatrização/efeitos da radiação , Animais , Masculino , Ratos , Ratos Endogâmicos F344 , Pele/patologia , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA