Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anticancer Drugs ; 35(2): 117-128, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38018861

RESUMO

Modeling the structural properties of novel morpholine-bearing 1, 5-diaryl-diazole derivatives as potent COX-2 inhibitor, two proposed models based on CoMFA and CoMSIA were evaluated by external and internal validation methods. Partial least squares analysis produced statistically significant models with Q 2 values of 0.668 and 0.652 for CoMFA and CoMSIA, respectively, and also a significant non-validated correlation coefficient R² with values of 0.882 and 0.878 for CoMFA and CoMSIA, respectively. Both models met the requirements of Golbraikh and Tropsha, which means that both models are consistent with all validation techniques. Analysis of the CoMFA and CoMSIA contribution maps and molecular docking revealed that the R1 substituent has a very significant effect on their biological activity. The most active molecules were evaluated for their thermodynamic stability by performing MD simulations for 100 ns; it was revealed that the designed macromolecular ligand complex with 3LN1 protein exhibits a high degree of structural and conformational stability. Based on these results, we predicted newly designed compounds, which have acceptable oral bioavailability properties and would have high synthetic accessibility.


Assuntos
Antineoplásicos , Inibidores de Ciclo-Oxigenase 2 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Disponibilidade Biológica , Antineoplásicos/farmacologia
2.
Molecules ; 28(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37570884

RESUMO

Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases worldwide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA. Molecular modeling techniques play a crucial role in the search for new drugs by reducing time delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94, R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values. The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors were selected for further study based on an ADMET analysis of their pharmacokinetic properties and covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns molecular dynamics simulations, free energy binding calculations and ADMET predictions. The results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising candidates for use as drugs.


Assuntos
2-Aminopurina , Antirreumáticos , Desenho Assistido por Computador , Desenho de Fármacos , Janus Quinase 3 , Inibidores de Janus Quinases , 2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacologia , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/farmacologia , Janus Quinase 3/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Piperidinas/química , Piperidinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/química , Antirreumáticos/farmacologia , Farmacóforo
3.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202604

RESUMO

This work aimed to find new inhibitors of the CYP3A4 and JAK3 enzymes, which are significant players in autoimmune diseases such as rheumatoid arthritis. Advanced computer-aided drug design techniques, such as pharmacophore and 3D-QSAR modeling, were used. Two strong 3D-QSAR models were created, and their predictive power was validated by the strong correlation (R2 values > 80%) between the predicted and experimental activity. With an ROC value of 0.9, a pharmacophore model grounded in the DHRRR hypothesis likewise demonstrated strong predictive ability. Eight possible inhibitors were found, and six new inhibitors were designed in silico using these computational models. The pharmacokinetic and safety characteristics of these candidates were thoroughly assessed. The possible interactions between the inhibitors and the target enzymes were made clear via molecular docking. Furthermore, MM/GBSA computations and molecular dynamics simulations offered insightful information about the stability of the binding between inhibitors and CYP3A4 or JAK3. Through the integration of various computational approaches, this study successfully identified potential inhibitor candidates for additional investigation and efficiently screened compounds. The findings contribute to our knowledge of enzyme-inhibitor interactions and may help us create more effective treatments for autoimmune conditions like rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Cisteína , Citocromo P-450 CYP3A , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Simulação de Dinâmica Molecular , Janus Quinase 3
4.
Front Chem ; 12: 1425220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39189018

RESUMO

The Janus kinase 3 (JAK3) family, particularly JAK3, is pivotal in initiating autoimmune diseases such as rheumatoid arthritis. Recent advancements have focused on developing antirheumatic drugs targeting JAK3, leading to the discovery of novel pyrazolopyrimidine-based compounds as potential inhibitors. This research employed covalent docking, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) analysis, molecular dynamics modeling, and MM/GBSA (Molecular Mechanics Generalized Born Surface Area) binding free energy techniques to screen 41 in silico-designed pyrazolopyrimidine derivatives. Initially, 3D structures of the JAK3 enzyme were generated using SWISS-MODEL, followed by virtual screening and covalent docking via AutoDock4 (AD4). The selection process involved the AMES test, binding affinity assessment, and ADMET analysis, narrowing down the candidates to 27 compounds that passed the toxicity test. Further covalent docking identified compounds 21 and 41 as the most promising due to their high affinity and favourable ADMET profiles. Subsequent development led to the creation of nine potent molecules, with derivatives 43 and 46 showing exceptional affinity upon evaluation through molecular dynamics simulation and MM/GBSA calculations over 300 nanoseconds, comparable to tofacitinib, an approved RA drug. However, compounds L21 and L46 demonstrated stable performance, suggesting their effectiveness in treating rheumatoid arthritis and other autoimmune conditions associated with JAK3 inhibition.

5.
Front Mol Biosci ; 11: 1348277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516192

RESUMO

The heterocycle compounds, with their diverse functionalities, are particularly effective in inhibiting Janus kinases (JAKs). Therefore, it is crucial to identify the correlation between their complex structures and biological activities for the development of new drugs for the treatment of rheumatoid arthritis (RA) and cancer. In this study, a diverse set of 28 heterocyclic compounds selective for JAK1 and JAK3 was employed to construct quantitative structure-activity relationship (QSAR) models using multiple linear regression (MLR). Artificial neural network (ANN) models were employed in the development of QSAR models. The robustness and stability of the models were assessed through internal and external methodologies, including the domain of applicability (DoA). The molecular descriptors incorporated into the model exhibited a satisfactory correlation with the receptor-ligand complex structures of JAKs observed in X-ray crystallography, making the model interpretable and predictive. Furthermore, pharmacophore models ADRRR and ADHRR were designed for each JAK1 and JAK3, proving effective in discriminating between active compounds and decoys. Both models demonstrated good performance in identifying new compounds, with an ROC of 0.83 for the ADRRR model and an ROC of 0.75 for the ADHRR model. Using a pharmacophore model, the most promising compounds were selected based on their strong affinity compared to the most active compounds in the studied series each JAK1 and JAK3. Notably, the pharmacokinetic, physicochemical properties, and biological activities of the selected compounds (As compounds ZINC79189223 and ZINC66252348) were found to be consistent with their therapeutic effects in RA, owing to their non-toxic, cholinergic nature, absence of P-glycoprotein, high gastrointestinal absorption, and ability to penetrate the blood-brain barrier. Furthermore, ADMET properties were assessed, and molecular dynamics and MM/GBSA analysis revealed stability in these molecules.

6.
Front Chem ; 12: 1384832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887699

RESUMO

This study focused on developing new inhibitors for the MCF-7 cell line to contribute to our understanding of breast cancer biology and various experimental techniques. 3D QSAR modeling was used to design new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives with good characteristics. Two robust 3D-QSAR models were developed, and their predictive capacities were confirmed through high correlations [CoMFA (Q2 = 0.62, R 2 = 0.90) and CoMSIA (Q2 = 0.71, R 2 = 0.88)] via external validations (R2 ext = 0.90 and R2 ext = 0.91, respectively). These successful evaluations confirm the potential of the models to provide reliable predictions. Six candidate inhibitors were discovered, and two new inhibitors were developed in silico using computational methods. The ADME-Tox properties and pharmacokinetic characteristics of the new derivatives were evaluated carefully. The interactions between the new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives and the protein ERα (PDB code: 4XO6) were highlighted by molecular docking. Additionally, MM/GBSA calculations and molecular dynamics simulations provided interesting information on the binding stabilities between the complexes. The pharmaceutical characteristics, interactions with protein, and stabilities of the inhibitors were examined using various methods, including molecular docking and molecular dynamics simulations over 100 ns, binding free energy calculations, and ADME-Tox predictions, and compared with the FDA-approved drug capivasertib. The findings indicate that the inhibitors exhibit significant binding affinities, robust stabilities, and desirable pharmaceutical characteristics. These newly developed compounds, which act as inhibitors to mitigate breast cancer, therefore possess considerable potential as prospective drug candidates.

7.
Heliyon ; 10(19): e38383, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39397921

RESUMO

Given the critical role of survivin (BIRC5) in tumor cell regulation, developing novel inhibitors represents a promising approach for cancer therapy. This study details the design of innovative survivin inhibitors based on the hydroxyquinoline scaffold of our previously reported lead compound, MX-106. Our study identified nine compounds whose inhibitory activity is expected to be superior to that of the most active molecule in the series. These compounds demonstrated potent suppression of MDA-MB-435 breast cancer cell proliferation in vitro and exhibited enhanced metabolic stability compared to the series' most active member. To evaluate these derivatives as potential survivin inhibitors, we employed a multi-faceted approach combining 2D-QSAR methods, molecular docking, molecular dynamics, and ADMET property assessment. Our molecular modeling studies led to the design of nine novel compounds (Pred1-Pred9) predicted to exhibit potent survivin inhibitory activity based on MLR models. To assess their suitability as drug candidates, we recommend a thorough evaluation of their ADMET properties. These compounds hold promise as innovative anticancer agents targeting survivin, similar to the established MX-106.

8.
BMC Chem ; 18(1): 142, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085870

RESUMO

Based on a structural family of thirty-two NR2B-selective N-Methyl-D-Aspartate receptor (NMDAR) antagonists, two phenylpiperazine derivatives labeled C37 and C39 were conceived thanks to molecular modeling techniques, as novel NMDAR inhibitors exhibiting the highest analgesic activities (of pIC50 order) against neuropathic pain, with excellent ADME-toxicity profiles, and good levels of molecular stability towards the targeted protein of NMDA receptor. Initially, the quantitative structure-activity relationships (QSARs) models were developed using multiple linear regression (MLR), partial least square regression (PLSR), multiple non-linear regression (MNLR), and artificial neural network (ANN) techniques, revealing that analgesic activity was strongly correlated with dipole moment, octanol/water partition coefficient, Oxygen mass percentage, electronegativity, and energy of the lowest unoccupied molecular orbital, whose the correlation coefficients of generated models were: 0.860, 0.758, 0.885 and 0.977, respectively. The predictive capacity of each model was evaluated by an external validation with correlation coefficients of 0.703, 0.851, 0.778, and 0.981 respectively, followed by a cross-validation technique with the leave-one-out procedure (CVLOO) with Q2cv of 0.785, more than Y-randomization test, and applicability domain (AD), in addition to Fisher's and Student's statistical tests. Thereafter, ten novel molecules were designed based on MLR QSAR model, then predicted with their ADME-Toxicity profiles and subsequently examined for their similarity to the drug candidates. Finally, two of the most active compounds (C37 and C39) were chosen for molecular docking and molecular dynamics (MD) investigations during 100 ns of MD simulation time in complex with the targeted protein of NMDA receptor (5EWJ.pdb).

9.
J Biomol Struct Dyn ; 41(19): 10171-10189, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36533393

RESUMO

Mutations in the p53 gene are common and occur in over 50% of all cancers, as it is involved in DNA damage repair, cell cycle regulation and apoptosis. Moreover, the p53 gene is mutated in 70% of colon cancers. Therefore, the development of drugs to combat this mutation requires urgent attention. With this in mind, in silico drug design approaches were applied on quinoline derivatives with anticancer activity. In 3D-QSAR study, steric, electrostatic, hydrophobic and H-bond acceptor fields (SEHA) play an important role in prediction and design of new colon cancer compounds. Indeed, the two best CoMSIA/SEHA models with (Q2 = 0.737, R2 = 0.914, Rpred2 = 0.720) and (Q2 = 0.738, R2 = 0.919, Rpred2= 0.739) show good prediction of human colon carcinoma HCT 116 (p53+/+) and (p53-/-) activities, respectively. Furthermore, the predictive ability and robustness of these models were tested by several validation methods. Molecular docking analyses reveal crucial interactions with the active sites of the p53 protein in both wild type and mutant. Based on these theoretical studies, we designed 10 new compounds with good anticancer activity potential, which were evaluated using ADMET properties. Molecular dynamics simulations were performed to confirm the detailed binding mode of the docking results. Finally, the MM-GBSA based on molecular dynamics simulation confirmed that the designed compounds were able to form stable hydrogen bonding interactions with the crucial residues, which are essential to overcome the p53 mutation in colon cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/genética , Simulação de Dinâmica Molecular , Desenho de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Relação Quantitativa Estrutura-Atividade
10.
J Biomol Struct Dyn ; 41(1): 161-175, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825630

RESUMO

Resistance to folate antagonists is caused by mutations in the dihydrofolate reductase (DHFR) genes. These mutations affect the amino acids at positions 51, 59, 108 and 164 of DHFR, which appear to play a major role in malaria treatment failure. Therefore, the design of new drugs able to overcome the problem of antifolate drug resistance should receive urgent attention. In this study, a three-dimensional quantitative structure-activity relationship (3 D-QSAR) and molecular docking studies have been performed on antimalarial quinazoline derivatives. The CoMFA (Q2 = 0.63, R2 = 0.83 and Rpred2 = 0.70) and the CoMSIA (Q2 = 0.584, R2 = 0.816, and Rpred2= 0.73) models show a good prediction of antimalarial activity. The reliability and robustness of the proposed models have been tested using several validation methods, which showed that the steric, electrostatic, hydrophobic and H-bond acceptor fields of the CoMSIA model play a key role in the prediction of antimalarial activity. Molecular docking studies reveal important interactions between two isomeric compounds (meta and para) and the DHFR receptor in its wild and mutant forms. The obtained outcomes of molecular docking studies have been validated using a new method based on visual inspection. The DFT study of the two isomeric compounds confirms clearly the trends of 3 D-QSAR and molecular docking for the design of new compounds. Moreover, the consistency between theoretical, 3 D-QSAR and molecular docking analysis provides guidance for the design of new drug candidates, which have been tested using ADMET properties and drug likeness analysis.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Antagonistas do Ácido Fólico/farmacologia , Quinazolinas/farmacologia , Antimaláricos/farmacologia , Reprodutibilidade dos Testes
11.
J Biomol Struct Dyn ; : 1-26, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37539779

RESUMO

In this study, we used phenylpyrimidine derivatives with known biological activity against JAK3, a critical tyrosine kinase enzyme involved in signaling pathways, to find similar compounds as potential treatments for rheumatoid arthritis. These inhibitors inhibited JAK3 activity by forming a covalent bond with the Cys909 residue, which resulted in a strong inhibitory effect. Phenylpyrimidine is considered a promising therapeutic target. For pharmacophore modeling, 39 phenylpyrimidine derivatives with high pIC50 (Exp) values were chosen. The best pharmacophore model produced 28 molecules, and the five-point common pharmacophore hypothesis from P HASE (DHRRR_1) revealed the requirement for a hydrogen bond donor feature, a hydrophobic group feature, and three aromatic ring features for further design. The validation of the pharmacophore model phase was performed through 3D-QSAR using partial least squares (P LS). The 3D-QSAR study produced two successful models, an atom-based model (R2 = 0.95; Q2 = 0.67) and a field-based model (R2 = 0.93; Q2 = 0.76), which were used to predict the biological activity of new compounds. The pharmacophore model successfully distinguished between active and inactive medications, discovered potential JAK3 inhibitors, and demonstrated validity with a ROC of 0. 77. ADME-Tox was used to eliminate compounds that might have adverse effects. The best pharmacokinetics and affinity derivatives were selected for covalent docking. A molecular dynamics simulation of the selected molecules and the protein complex was performed to confirm the stability of the interaction with JAK3, whereas MM/GBSA simulations further confirmed their binding affinity. By using the principle of retrosynthesis, we were able to map out a pathway for synthesizing these potential drug candidates. This study has the potential to offer valuable and practical insights for optimizing novel derivatives of phenylpyrimidine.Communicated by Ramaswamy H. Sarma.

12.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338041

RESUMO

Rheumatoid arthritis is a prevalent and debilitating chronic disease worldwide. Targeting Janus kinase 3 (JAK3) has emerged as a crucial molecular strategy to treat this condition. In this study, we employed a comprehensive theoretical approach that included 3D-QSAR, covalent docking, ADMET, and molecular dynamics to propose and optimize new anti-JAK3 compounds. We investigated a series of 28 1H-pyrazolo[3.4-d]pyrimidin-4-amino inhibitors and developed a highly accurate 3D-QSAR model using comparative molecular similarity index analysis (COMSIA). The model predicted with Q2 = 0.59, R2 = 0.96, and R2(Pred) = 0.89, was validated using Y-randomization and external validation methods. Our covalent docking studies identified T3 and T5 as highly potent inhibitors of JAK3 compared to the reference ligand 17. Additionally, we evaluated the ADMET properties and drug similarity of our newly developed compounds and reference ligand, providing critical insights for further optimization of anti-JAK3 medications. Furthermore, MM-GBSA analysis showed promising results for the designed compounds. Finally, we validated our docking results using molecular dynamics simulations, which confirmed the stability of hydrogen bonding contacts with key residues required to block JAK3 activity. Our findings offer new chemical scaffolds and insights that could lead to the development of novel and effective JAK3 therapeutic targets for treating rheumatoid arthritis.Communicated by Ramaswamy H. Sarma.

13.
J Biomol Struct Dyn ; 41(21): 11657-11670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36695085

RESUMO

Tropomyosin receptor kinase (TRK) enzymes are responsible for different types of tumors caused by neurotrophic tyrosine receptor kinase gene fusion and have been identified as an effective target for anticancer therapy. The study of the mechanism between polo-like kinase (PLKs) and pyrazol inhibitors was performed using 3D-QSAR modeling, molecular docking, and MD simulations in order to design high-activity inhibitors. The HQSAR (Q2 = 0.793, R2 = 0.917, R2ext = 0.961), CoMFA (Q2 = 0.582, R2 = 0.722, R2ext = 0.951), CoMSIA/SE (Q2 = 0.603, R2 = 0.801, R2ext = 0.849), and Topomer CoMFA (Q2 = 0.726, R2 = 0.992, R2ext = 0.717) showed good reliability and predictability. All models have been successfully tested by external validation, so all five established models are reliable. The analysis of the different contour maps of different models gives structural information to improve the inhibitory function. Molecular docking results show that the amino acids Met 592, GLU 590, LEU 657, VAL 524, and PHE 589 are the active sites of the tropomyosin receptor TRKs. The results obtained by MD showed that compound 19i could form a more stable complex protein (PDB id: 5KVT). Based on these results, we developed new compounds and their expected inhibitory activities. The results of physicochemical and ADME-Tox properties showed that the four proposed molecules are orally bioavailable, and they are not toxic in the Ames test. Thus, these results would provide modeling information that could help experimental researchers find TRK type I inhibitors more efficiently.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Tropomiosina , Antineoplásicos/farmacologia
14.
J Biomol Struct Dyn ; : 1-23, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861428

RESUMO

Inhibition of Janus kinase 3 (JAK3), a member of the JAK family of tyrosine kinases, remains an essential area of research for developing treatments for autoimmune diseases, particularly cancer and rheumatoid arthritis. The recent discovery of a new JAK3 protein, PDB ID: 4Z16, offers exciting possibilities for developing inhibitors capable of forming a covalent bond with the Cys909 residue, thereby contributing to JAK3 inhibition. A powerful prediction model was constructed and validated using Monte Carlo methods, employing various internal and external techniques. This approach resulted in the prediction of eleven new molecules, which were subsequently filtered to identify six compounds exhibiting potent pIC50 values. These candidates were then subjected to ADMET analysis, molecular docking (including reversible-reversible docking with tofacitinib, an FDA-approved drug, and reversible-irreversible docking for the newly designed compounds), molecular dynamics (MD) analysis for 300 ns, and calculation of free binding energy. The results suggested that these compounds hold promise as JAK3 inhibitors. In summary, the new compounds have exhibited favorable outcomes compared to other compounds across various modeling approaches. The collective findings from these investigations provide valuable insights into the potential therapeutic applications of covalent JAK3 inhibitors, offering a promising direction for the development of novel treatments for autoimmune disorders.Communicated by Ramaswamy H. Sarma.

15.
Heliyon ; 9(2): e13706, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36865465

RESUMO

A structural class of forty glycine transporter type 1 (GlyT1) inhibitors, was examined using molecular modeling techniques. The quantitative structure-activity relationships (QSAR) technology confirmed that human GlyT1 activity is strongly and significantly affected by constitutional, geometrical, physicochemical and topological descriptors. ADME-Tox in-silico pharmacokinetics revealed that L28 and L30 ligands were predicted as non-toxic inhibitors with a good ADME profile and the highest probability to penetrate the central nervous system (CNS). Molecular docking results indicated that the predicted inhibitors block GlyT1, reacting specifically with Phe319, Phe325, Tyr123, Tyr 124, Arg52, Asp475, Ala117, Ala479, Ile116 and Ile483 amino acids of the dopamine transporter (DAT) membrane protein. These results were qualified and strengthened using molecular dynamics (MD) study, which affirmed that the established intermolecular interactions for (L28, L30-DAT protein) complexes remain perfectly stable along 50 ns of MD simulation time. Therefore, they could be strongly recommended as therapeutics in medicine to improve memory performance.

16.
J Biomol Struct Dyn ; : 1-15, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428078

RESUMO

GluN2B-induced activation of NMDA receptors plays a key function in central nervous system (CNS) disorders, including Parkinson, Alzheimer, and stroke, as it is strongly involved in excitotoxicity, which makes selective NMDA receptor antagonists one of the potential therapeutic agents for the treatment of neurodegenerative diseases, especially stroke. The present study aims to examine a structural family of thirty brain-penetrating GluN2B N-methyl-D-aspartate (NMDA) receptor antagonists, using virtual computer-assisted drug design (CADD) to discover highly candidate drugs for ischemic strokes. Initially, the physicochemical and ADMET pharmacokinetic properties confirmed that C13 and C22 compounds were predicted as non-toxic inhibitors of CYP2D6 and CYP3A4 cytochromes, with human intestinal absorption (HIA) exceeding 90%, and designed to be as efficient central nervous system (CNS) agents due to the highest probability to cross the blood-brain barrier (BBB). Compared to ifenprodil, a co-crystallized ligand complexed with the transport protein encoded as 3QEL.pdb, we have noticed that C13 and C22 chemical compounds were defined by good ADME-Toxicity profiles, meeting Lipinski, Veber, Egan, Ghose, and Muegge rules. The molecular docking results indicated that C22 and C13 ligands react specifically with the amino acid residues of the NMDA receptor subunit GluN1 and GluN2B. These intermolecular interactions produced between the candidate drugs and the targeted protein in the B chain remain stable over 200 nanoseconds of molecular dynamics simulation time. In conclusion, C22 and C13 ligands are highly recommended as anti-stroke therapeutic drugs due to their safety and molecular stability towards NMDA receptors.Communicated by Ramaswamy H. Sarma.

17.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317996

RESUMO

Rheumatoid arthritis is a common chronic disabling inflammatory disease that is characterized by inflammation of the synovial membrane and leads to discomfort. In the current study, twenty-seven 1,6-disubstituted 1H-pyrazolo[3,4-d]pyrimidines were tested as potential selective inhibitors of the tyrosine-protein kinase JAK3 using a number of molecular modeling methods. The activity of the screened derivatives was statistically quantified using multiple linear regression and artificial neural networks. To assess the quality, robustness, and predictability of the generated models, the leave-one-out cross-validation method was applied with favorable results (Q2 = 0.75) and Y-randomization. In addition, the evaluation of the predictive ability of the established model was confirmed by means of an external validation using a composite test set and an applicability domain approach. The covalent docking indicated that the tested 1H-pyrazolo[3,4-d]pyrimidines containing the acrylic aldehyde moiety had irreversible interaction with the residue Cys909 in the active sites of the tyrosine-protein kinase JAK3 by Michael addition. The molecular dynamics for three selected derivatives (compounds 9, 12, and 18) were used to verify the covalent docking by determining the stability of hydrogen bonding interactions with active sites, which are needed to stop tyrosine-protein kinase JAK3. The results obtained showed that the tested compounds containing acrylic aldehyde moiety had favorable binding free energies, indicating a strong affinity for the JAK3 enzyme. Overall, this current study suggests that the tested compounds containing the acrylic aldehyde moiety have the potential to act as anti-JAK3 inhibitors. They could be explored further to be used as treatment options for rheumatoid arthritis.Communicated by Ramaswamy H. Sarma.

18.
Life (Basel) ; 13(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36676076

RESUMO

Overexpression of polo-like kinase 1 (PLK1) has been found in many different types of cancers. With its essential role in cell proliferation, PLK1 has been determined to be a broad-spectrum anti-cancer target. In this study, 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations were applied on a series of novel pteridinone derivatives as PLK1 inhibitors to discover anti-cancer drug candidates. In this work, three models­CoMFA (Q² = 0.67, R² = 0.992), CoMSIA/SHE (Q² = 0.69, R² = 0.974), and CoMSIA/SEAH (Q² = 0.66, R² = 0.975)­of pteridinone derivatives were established. The three models that were established gave Rpred2 = 0.683, Rpred 2= 0.758, and Rpred 2= 0.767, respectively. Thus, the predictive abilities of the three proposed models were successfully evaluated. The relations between the different champs and activities were well-demonstrated by the contour chart of the CoMFA and CoMSIA/SEAH models. The results of molecular docking indicated that residues R136, R57, Y133, L69, L82, and Y139 were the active sites of the PLK1 protein (PDB code: 2RKU), in which the more active ligands can inhibit the enzyme of PLK1. The results of the molecular dynamic MD simulation diagram were obtained to reinforce the previous molecular docking results, which showed that both inhibitors remained stable in the active sites of the PLK1 protein (PDB code: 2RKU) for 50 ns. Finally, a check of the ADME-Tox properties of the two most active molecules showed that molecular N° 28 could represent a good drug candidate for the therapy of prostate cancer diseases.

19.
J Biomol Struct Dyn ; : 1-30, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059345

RESUMO

This study presents a robust and integrated methodology that harnesses a range of computational techniques to facilitate the design and prediction of new inhibitors targeting the JAK3/STAT pathway. This methodology encompasses several strategies, including QSAR analysis, pharmacophore modeling, ADMET prediction, covalent docking, molecular dynamics (MD) simulations, and the calculation of binding free energies (MM/GBSA). An efficacious QSAR model was meticulously crafted through the employment of multiple linear regression (MLR). The initial MLR model underwent further refinement employing an artificial neural network (ANN) methodology aimed at minimizing predictive errors. Notably, both MLR and ANN exhibited commendable performance, showcasing R2 values of 0.89 and 0.95, respectively. The model's precision was assessed via leave-one-out cross-validation (CV) yielding a Q2 value of 0.65, supplemented by rigorous Y-randomization. , The pharmacophore model effectively differentiated between active and inactive drugs, identifying potential JAK3 inhibitors, and demonstrated validity with an ROC value of 0.86. The newly discovered and designed inhibitors exhibited high inhibitory potency, ranging from 6 to 8, as accurately predicted by the QSAR models. Comparative analysis with FDA-approved Tofacitinib revealed that the new compounds exhibited promising ADMET properties and strong covalent docking (CovDock) interactions. The stability of the new discovered and designed inhibitors within the JAK3 binding site was confirmed through 500 ns MD simulations, while MM/GBSA calculations supported their binding affinity. Additionally, a retrosynthetic study was conducted to facilitate the synthesis of these potential JAK3/STAT inhibitors. The overall integrated approach demonstrates the feasibility of designing novel JAK3/STAT inhibitors with robust efficacy and excellent ADMET characteristics that surpass Tofacitinib by a significant margin.Communicated by Ramaswamy H. Sarma.

20.
Pharmaceuticals (Basel) ; 15(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35745588

RESUMO

Forty-four bicyclo ((aryl) methyl) benzamides, acting as glycine transporter type 1 (GlyT1) inhibitors, are developed using molecular modeling techniques. QSAR models generated by multiple linear and non-linear regressions affirm that the biological inhibitory activity against the schizophrenia disease is strongly and significantly correlated with physicochemical, geometrical and topological descriptors, in particular: Hydrogen bond donor, polarizability, surface tension, stretch and torsion energies and topological diameter. According to in silico ADMET properties, the most active ligands (L6, L9, L30, L31 and L37) are the molecules having the highest probability of penetrating the central nervous system (CNS), but the molecule 32 has the highest probability of being absorbed by the gastrointestinal tract. Molecular docking results indicate that Tyr124, Phe43, Phe325, Asp46, Phe319 and Val120 amino acids are the active sites of the dopamine transporter (DAT) membrane protein, in which the most active ligands can inhibit the glycine transporter type 1 (GlyT1). The results of molecular dynamics (MD) simulation revealed that all five inhibitors remained stable in the active sites of the DAT protein during 100 ns, demonstrating their promising role as candidate drugs for the treatment of schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA