Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 298(6): 101953, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447117

RESUMO

Free amino acids that accumulate in the plasma of patients with diabetes and obesity influence lipid metabolism and protein synthesis in the liver. The stress-inducible intracellular protease calpain proteolyzes various substrates in vascular endothelial cells (ECs), although its contribution to the supply of free amino acids in the liver microenvironment remains enigmatic. In the present study, we showed that calpains are associated with free amino acid production in cultured ECs. Furthermore, conditioned media derived from calpain-activated ECs facilitated the phosphorylation of ribosomal protein S6 kinase (S6K) and de novo lipogenesis in hepatocytes, which were abolished by the amino acid transporter inhibitor, JPH203, and the mammalian target of rapamycin complex 1 inhibitor, rapamycin. Meanwhile, calpain-overexpressing capillary-like ECs were observed in the livers of high-fat diet-fed mice. Conditional KO of EC/hematopoietic Capns1, which encodes a calpain regulatory subunit, diminished levels of branched-chain amino acids in the hepatic microenvironment without altering plasma amino acid levels. Concomitantly, conditional KO of Capns1 mitigated hepatic steatosis without normalizing body weight and the plasma lipoprotein profile in an amino acid transporter-dependent manner. Mice with targeted Capns1 KO exhibited reduced phosphorylation of S6K and maturation of lipogenic factor sterol regulatory element-binding protein 1 in hepatocytes. Finally, we show that bone marrow transplantation negated the contribution of hematopoietic calpain systems. We conclude that overactivation of calpain systems may be responsible for the production of free amino acids in ECs, which may be sufficient to potentiate S6K/sterol regulatory element-binding protein 1-induced lipogenesis in surrounding hepatocytes.


Assuntos
Calpaína , Fígado Gorduroso , Aminoácidos/metabolismo , Animais , Calpaína/genética , Calpaína/metabolismo , Células Endoteliais/metabolismo , Fígado Gorduroso/metabolismo , Humanos , Lipogênese , Fígado/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
2.
Amino Acids ; 55(2): 183-192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436082

RESUMO

Brain amino acid metabolism has been reported to regulate body temperature, feeding behavior and stress response. Central injection of taurine induced hypothermic and anorexigenic effects in chicks. However, it is still unknown how the amino acid metabolism is influenced by the central injection of taurine. Therefore, the objective of this study was to investigate the changes in brain and plasma free amino acids following central injection of taurine. Five-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). Central taurine increased tryptophan concentrations in the diencephalon, and decreased tyrosine in the diencephalon, brainstem, cerebellum, telencephalon and plasma at 30 min post-injection. Taurine was increased in all the brain parts after ICV taurine. Although histidine and cystathionine concentrations were increased in the diencephalon and brainstem, several amino acids such as isoleucine, arginine, methionine, phenylalanine, glutamic acid, asparagine, proline, and alanine were reduced following central injection of taurine. All amino acid concentrations were decreased in the plasma after ICV taurine. In conclusion, central taurine quickly changes free amino acid concentrations in the brain and plasma, which may have a role in thermoregulation, food intake and stress response in chicks.


Assuntos
Aminoácidos , Taurina , Masculino , Animais , Aminoácidos/metabolismo , Taurina/farmacologia , Encéfalo/metabolismo , Prolina/metabolismo , Arginina/metabolismo , Galinhas/metabolismo
3.
J Therm Biol ; 98: 102905, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016332

RESUMO

The aim of this study was to examine the central action of taurine on body temperature and food intake in neonatal chicks under control thermoneutral temperature (CT) and high ambient temperature (HT). Intracerebroventricular injection of taurine caused dose-dependent hypothermia and reduced food intake under CT. The mRNA expression of the GABAA receptors, GABAAR-α1 and GABAAR-γ, but not that of GABABR, significantly decreased in the diencephalon after central injection of taurine. Subsequently, we found that picrotoxin, a GABAAR antagonist, attenuated taurine-induced hypothermia. Central taurine significantly decreased the brain concentrations of 3-methoxy-4-hydroxyphenylglycol, a major metabolite of norepinephrine; however, the concentrations of serotonin, dopamine, and the epinephrine metabolites, 3,4-hydroxyindoleacetic acid and homovanillic acid, were unchanged. Although hypothermia was not observed under HT after central injection of taurine, plasma glucose and uric acid levels were higher, and plasma sodium and calcium levels were lower, than those in chicks under CT. In conclusion, brain taurine may play a role in regulating body temperature and food intake in chicks through GABAAR. The changes in plasma metabolites under heat stress suggest that brain taurine may play an important role in maintaining homeostasis in chicks.


Assuntos
Galinhas/fisiologia , Ingestão de Alimentos , Hipotermia/fisiopatologia , Receptores de GABA-A/fisiologia , Temperatura , Animais , Monoaminas Biogênicas/metabolismo , Glicemia/análise , Temperatura Corporal , Encéfalo/metabolismo , Galinhas/sangue , Galinhas/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Hipotermia/sangue , Hipotermia/induzido quimicamente , Hipotermia/genética , Injeções , Masculino , Receptores de GABA-A/genética , Taurina , Ácido Úrico/sangue
4.
J Poult Sci ; 60(1): 2023004, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36756047

RESUMO

Ornithine has been identified as a potential satiety signal in the brains of neonatal chicks. We hypothesized that brain nutrient signals such as amino acids and appetite-related neuropeptides synergistically regulate food intake. To test this hypothesis, we investigated the interaction between neuropeptide Y (NPY) and ornithine in the control of feeding behavior in chicks and the associated central and peripheral amino acid metabolic processes. Five-day-old chicks were intracerebroventricularly injected with saline, NPY (375 pmol), or NPY plus ornithine (2 or 4 µmol) at 10 µl per chick, and then subjected to ad libitum feeding conditions; food intake was monitored for 30 min after injection. Brain and plasma samples were collected after the experiment to determine free amino acid concentrations. Co-injection of NPY and ornithine significantly attenuated the orexigenic effect induced by NPY in a dose-dependent manner. Central NPY significantly decreased amino adipic acid, asparagine, γ-aminobutyric acid, leucine, phenylalanine, tyrosine, and isoleucine levels, but significantly increased lysine levels in the brain. Co-injection of NPY and ornithine significantly increased ornithine and proline levels in all examined brain regions, but decreased diencephalic tryptophan and glycine levels compared with those of the control and NPY-alone groups. Co-injection of NPY and high-dose ornithine significantly decreased methionine levels in all brain regions. Central NPY significantly suppressed the plasma concentrations of amino acids, including proline, asparagine, methionine, phenylalanine, tyrosine, leucine, isoleucine, glycine, glutamine, alanine, arginine, and valine, and this reduction was greater when NPY was co-injected with ornithine. These results suggest that brain ornithine interacts with NPY to regulate food intake in neonatal chicks. Furthermore, central NPY may induce an anabolic effect that is modified by co-injection with ornithine.

5.
Eur J Pharmacol ; 928: 175092, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35697149

RESUMO

Brain monoamines are reported to regulate body temperature and food intake. The objective of this study was to investigate the mechanism of brain monoamine metabolism in taurine-induced hypothermia and appetite suppression. In Experiment 1, 5-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). In Experiment 2, the chicks were ICV injected with saline, taurine, fusaric acid (dopamine-ß-hydroxylase inhibitor: 558 nmol), or taurine with fusaric acid. In Experiment 3, the chicks were ICV injected with saline, taurine, para-chlorophenylalanine (PCPA, tryptophan hydroxylase inhibitor: 400 nmol), or taurine with PCPA. In Experiment 4, the chicks were ICV injected with saline, taurine, clorgyline (monoamine oxidase inhibitor: 81 nmol), or taurine with clorgyline. Central taurine lowered rectal temperature at 30 min post-injection and increased norepinephrine in the brainstem and its metabolite 3-methoxy-4-hydroxyphenylglycol in both the diencephalon and brainstem. Similarly, taurine treatment induced increases in serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid in the diencephalon. Fusaric acid completely and PCPA partially, but not clorgyline, attenuated taurine-induced hypothermia. The anorexigenic effect of taurine was partially attenuated by PCPA, but not fusaric acid nor clorgyline. In conclusion, central taurine activates dopamine-ß-hydroxylase and tryptophan hydroxylase to produce norepinephrine and 5-HT, and then induces hypothermia, but 5-HT alone may be linked with taurine-induced anorexia in chicks.


Assuntos
Hipotermia , Animais , Galinhas/metabolismo , Dopamina/farmacologia , Ingestão de Alimentos , Fenclonina/farmacologia , Hipotermia/induzido quimicamente , Masculino , Norepinefrina/farmacologia , Serotonina/metabolismo , Taurina/farmacologia , Triptofano Hidroxilase/farmacologia
6.
Neurosci Lett ; 784: 136749, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35728682

RESUMO

Previously it was found that mRNA expression of neuropeptide Y (NPY) was increased in the chicken brain under heat stress. NPY has also been reported as an anti-stress factor to regulate brain functions in heat-exposed chicks. However, to the best of our knowledge, there is no report on the action of central NPY in the immune organs under heat stress. The aim of this study was to examine whether central injection of NPY can regulate heat stress response in the spleen and liver. After intracerebroventricular (ICV) injection of NPY, chicks were exposed to control thermoneutral temperature (CT: 30 ± 1 °C) or high ambient temperature (HT: 35 ± 1 °C) chambers for 60 min. Central injection of NPY caused lowering in rectal temperature under CT, but not under HT. Moreover, ICV injection of NPY caused a significant lower mRNA expression of heat-shock protein-70 and higher expression of glutathione synthase in the spleen, but not liver. Furthermore, plasma uric acid concentrations were significantly increased by the ICV injection of NPY in chicks under HT. These results indicate that brain NPY may contribute to attenuate the intracellular heat stress response and enhance antioxidative status in the immune organ, spleen in chicks.


Assuntos
Galinhas , Neuropeptídeo Y , Animais , Antioxidantes/farmacologia , Galinhas/metabolismo , Resposta ao Choque Térmico , Injeções Intraventriculares , RNA Mensageiro/metabolismo , Baço/metabolismo
7.
Metabolites ; 12(1)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35050205

RESUMO

The objective of this study was to determine the effects of centrally administered taurine on rectal temperature, behavioral responses and brain amino acid metabolism under isolation stress and the presence of co-injected corticotropin-releasing factor (CRF). Neonatal chicks were centrally injected with saline, 2.1 pmol of CRF, 2.5 µmol of taurine or both taurine and CRF. The results showed that CRF-induced hyperthermia was attenuated by co-injection with taurine. Taurine, alone or with CRF, significantly decreased the number of distress vocalizations and the time spent in active wakefulness, as well as increased the time spent in the sleeping posture, compared with the saline- and CRF-injected chicks. An amino acid chromatographic analysis revealed that diencephalic leucine, isoleucine, tyrosine, glutamate, asparagine, alanine, ß-alanine, cystathionine and 3-methylhistidine were decreased in response to taurine alone or in combination with CRF. Central taurine, alone and when co-administered with CRF, decreased isoleucine, phenylalanine, tyrosine and cysteine, but increased glycine concentrations in the brainstem, compared with saline and CRF groups. The results collectively indicate that central taurine attenuated CRF-induced hyperthermia and stress behaviors in neonatal chicks, and the mechanism likely involves the repartitioning of amino acids to different metabolic pathways. In particular, brain leucine, isoleucine, cysteine, glutamate and glycine may be mobilized to cope with acute stressors.

8.
Neuropeptides ; 89: 102169, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34229214

RESUMO

The role of the monoaminergic system in the feeding behavior of neonatal chicks has been reported, but the functional relationship between the metabolism of monoamines and appetite-related neuropeptides is still unclear. This study aimed to investigate the changes in catecholamine and indolamine metabolism in response to the central action of neuropeptide Y (NPY) in different feeding statuses and the underlying mechanisms. In Experiment 1, the diencephalic concentrations of amino acids and monoamines following the intracerebroventricular (ICV) injection of NPY (375 pmol/10 µl/chick), saline solution under ad libitum, and fasting conditions for 30 min were determined. Central NPY significantly decreased L-tyrosine concentration, the precursor of catecholamines under feeding condition, but not under fasting condition. Central NPY significantly increased dopamine metabolites, including 3,4-dihydroxyphenylacetic acid and homovanillic acid (HVA). The concentration of 3-methoxy-4-hydroxyphenylglycol was significantly reduced under feeding condition, but did not change under fasting condition by NPY. However, no effects of NPY on indolamine metabolism were found in either feeding status. Therefore, the mechanism of action of catecholamines with central NPY under feeding condition was elucidated in Experiment 2. Central NPY significantly attenuated diencephalic gene expression of catecholaminergic synthetic enzymes, such as tyrosine hydroxylase, L-aromatic amino acid decarboxylase, and GTP cyclohydrolase I after 30 min of feeding. In Experiment 3, co-injection of α-methyl-L-tyrosine, an inhibitor of tyrosine hydroxylase with NPY, moderately attenuated the orexigenic effect of NPY, accompanied by a significant positive correlation between food intake and HVA levels. In Experiment 4, there was a significant interaction between NPY and clorgyline, an inhibitor of monoamine oxidase A with ICV co-injection which implies that co-existence of NPY and clorgyline enhances the orexigenic effect of NPY. In conclusion, central NPY modifies a part of catecholamine metabolism, which is illustrated by the involvement of dopamine transmission and metabolism under feeding but not fasting conditions.


Assuntos
Encéfalo/efeitos dos fármacos , Catecolaminas/metabolismo , Dopamina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Tirosina/metabolismo , Animais , Encéfalo/metabolismo , Galinhas , Comportamento Alimentar/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA