Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Evol Biol ; 37(4): 471-485, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38350467

RESUMO

Critical thermal limits (CTLs) gauge the physiological impact of temperature on survival or critical biological function, aiding predictions of species range shifts and climatic resilience. Two recent Drosophila species studies, using similar approaches to determine temperatures that induce sterility (thermal fertility limits [TFLs]), reveal that TFLs are often lower than CTLs and that TFLs better predict both current species distributions and extinction probability. Moreover, many studies show fertility is more sensitive at less extreme temperatures than survival (thermal sensitivity of fertility [TSF]). These results present a more pessimistic outlook on the consequences of climate change. However, unlike CTLs, TFL data are limited to Drosophila, and variability in TSF methods poses challenges in predicting species responses to increasing temperature. To address these data and methodological gaps, we propose 3 standardized approaches for assessing thermal impacts on fertility. We focus on adult obligate sexual terrestrial invertebrates but also provide modifications for other animal groups and life-history stages. We first outline a "gold-standard" protocol for determining TFLs, focussing on the effects of short-term heat shocks and simulating more frequent extreme heat events predicted by climate models. As this approach may be difficult to apply to some organisms, we then provide a standardized TSF protocol. Finally, we provide a framework to quantify fertility loss in response to extreme heat events in nature, given the limitations in laboratory approaches. Applying these standardized approaches across many taxa, similar to CTLs, will allow robust tests of the impact of fertility loss on species responses to increasing temperatures.


Assuntos
Mudança Climática , Invertebrados , Animais , Temperatura , Fertilidade , Drosophila
2.
Ecol Soc ; 27(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36381294

RESUMO

How a society relates to nature is shaped by the dominant social paradigm (DSP): a society's collective view on social, economic, political, and environmental issues. The characteristics of the DSP have important consequences for natural systems and their conservation. Based on a synthesis of academic literature, we provide a new gradient of 12 types of human-nature relationships synthesized from scientific literature, and an analysis of where the DSP of industrialized, and more specifically, neoliberal societies fit on that gradient. We aim to answer how the industrialized DSP relates to nature, i.e., what types of human-nature relationships this DSP incorporates, and what the consequences of these relationships are for nature conservation and a sustainable future. The gradient of human-nature relationships is based on three defining characteristics: (1) a nature-culture divide, (2) core values, and (3) being anthropocentric or ecocentric. We argue that the industrialized DSP includes elements of the anthropocentric relationships of mastery, utilization, detachment, and stewardship. It therefore regards nature and culture as separate, is mainly driven by instrumental values, and drives detachment from and commodification of nature. Consequently, most green initiatives and policies driven by an industrialized and neoliberal DSP are based on economic incentives and economic growth, without recognition of the needs and limits of natural systems. This leads to environmental degradation and social inequality, obstructing the path to a truly sustainable society. To reach a more ecocentric DSP, systemic changes, in addition to individual changes, in the political and economic structures of the industrialized DSP are needed, along with a change in values and approach toward nature, long-term sustainability, and conservation.

3.
BMC Biol ; 18(1): 57, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460826

RESUMO

BACKGROUND: Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS: Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS: Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Insetos/genética , Animais , Artrópodes/genética , Filogenia
4.
Glob Chang Biol ; 26(6): 3294-3306, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32216012

RESUMO

Urban development and species invasion are two major global threats to biodiversity. These threats often co-occur, as developed areas are more prone to species invasion. However, few empirical studies have tested if both factors affect biodiversity in similar ways. Here we study the individual and combined effects of urban development and plant invasion on the composition of arthropod communities. We assessed 36 paired invaded and non-invaded sample plots, invaded by the plant Antigonon leptopus, with half of these pairs located in natural and the other half in developed land-use types on the Caribbean island of St. Eustatius. We used several taxonomic and functional variables to describe community composition and diversity. Our results show that both urban development and A. leptopus invasion affected community composition, albeit in different ways. Development significantly increased species richness and exponential Shannon diversity, while invasion had no effect on these variables. However, invasion significantly increased arthropod abundance and caused biotic homogenization. Specifically, uninvaded arthropod communities were distinctly different in species composition between developed and natural sites, while they became undistinguishable after A. leptopus invasion. Moreover, functional variables were significantly affected by species invasion, but not by urban development. Invaded communities had higher community-weighted mean body size and the feeding guild composition of invaded arthropod communities was characterized by the exceptional numbers of nectarivores, herbivores, and detritivores. With the exception of species richness and exponential Shannon diversity, invasion influenced four out of six response variables to a greater degree than urban development did. Hence, we can conclude that species invasion is not just a passenger of urban development but also a driver of change.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Herbivoria , Plantas , Reforma Urbana
5.
J Evol Biol ; 33(12): 1749-1757, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047401

RESUMO

Animals show a rich diversity of signals and displays. Among the many selective forces driving the evolution of communication signals, one widely recognized factor is the structure of the environment where animals communicate. In particular, animals communicating by sounds often emit acoustic signals from specific locations, such as high up in the air, from the ground or in the water. The properties of these different display sites may impose different constraints on sound production, and therefore drive signal evolution. Here, we used comparative phylogenetic analyses to assess the relationship between calling site (aquatic versus nonaquatic), body size and call dominant frequency of 160 frog species from the families Ranidae, Leptodactylidae and Hylidae. We found that the frequency of frogs calling from the water was lower than that of species calling outside of the water, a trend that was consistent across the three families studied. Furthermore, phylogenetic path analysis revealed that call site had both direct and indirect effects on call frequency. Indirect effects were mediated by call site influencing male body size, which in turn was negatively associated with call frequency. Our results suggest that properties of display sites can drive signal evolution, most likely not only through morphological constraints imposed on the sound production mechanism, but also through changes in body size, highlighting the relevance of the interplay between morphological adaptation and signal evolution. Changes in display site may therefore have important evolutionary consequences, as it may influence sexual selection processes and ultimately may even promote speciation.


Assuntos
Evolução Biológica , Ranidae/fisiologia , Vocalização Animal/fisiologia , Animais , Tamanho Corporal , Ecossistema , Masculino
6.
BMC Genomics ; 20(1): 309, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014246

RESUMO

BACKGROUND: Trait loss is a pervasive phenomenon in evolution, yet the underlying molecular causes have been identified in only a handful of cases. Most of these cases involve loss-of-function mutations in one or more trait-specific genes. However, in parasitoid insects the evolutionary loss of a metabolic trait is not associated with gene decay. Parasitoids have lost the ability to convert dietary sugars into fatty acids. Earlier research suggests that lack of lipogenesis in the parasitoid wasp Nasonia vitripennis is caused by changes in gene regulation. RESULTS: We compared transcriptomic responses to sugar-feeding in the non-lipogenic parasitoid species Nasonia vitripennis and the lipogenic Drosophila melanogaster. Both species adjusted their metabolism within 4 hours after sugar-feeding, but there were sharp differences between the expression profiles of the two species, especially in the carbohydrate and lipid metabolic pathways. Several genes coding for key enzymes in acetyl-CoA metabolism, such as malonyl-CoA decarboxylase (mcd) and HMG-CoA synthase (hmgs) differed in expression between the two species. Their combined action likely blocks lipogenesis in the parasitoid species. Network-based analysis showed connectivity of genes to be negatively correlated to the fold change of gene expression. Furthermore, genes involved in the fatty acid metabolic pathway were more connected than the set of genes of all metabolic pathways combined. CONCLUSION: High connectivity of lipogenesis genes is indicative of pleiotropic effects and could explain the absence of gene degradation. We conclude that modification of expression levels of only a few little-connected genes, such as mcd, is sufficient to enable complete loss of lipogenesis in N. vitripennis.


Assuntos
Evolução Molecular , Lipogênese/genética , Vespas/genética , Vespas/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Pleiotropia Genética , Transcrição Gênica , Vespas/fisiologia
7.
Am Nat ; 194(3): 422-431, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553212

RESUMO

The use of DNA demethylating agents has been popular in epigenetic studies. Recently, Cook and colleagues, in a 2015 American Naturalist article, claimed an effect of 5-aza-2'-deoxycytidine (5-aza-dC) on the sex ratio of a parasitoid wasp without verifying its effect on DNA methylation. We repeated the 5-aza-dC feeding treatment to test its effectiveness. We used bisulfite amplicon sequencing of 10 genes that either were heavily methylated, previously showed a response to 5-aza-dC, or were suggested to regulate fatty acid synthesis epigenetically, and we demonstrate that wasps fed 5-aza-dC did not show reduced DNA methylation at these loci. Therefore, the conclusion that demethylation shifts sex ratios upward needs reconsideration.


Assuntos
Metilação de DNA , Vespas , Animais , Azacitidina , Decitabina , Razão de Masculinidade
8.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31019064

RESUMO

Insect pheromones are often derived from fatty acid metabolism. Fatty acid desaturases, enzymes introducing double bonds into fatty acids, are crucial for the biosynthesis of these chemical signals. Δ12-desaturases catalyse the biosynthesis of linoleic acid by introducing a second double bond into oleic acid, but have been identified in only a few animal species. Here, we report the functional characterisation of two Δ12-desaturases, Nvit_D12a and Nvit_D12b, from the parasitic wasp Nasonia vitripennis. We demonstrate that Nvit_D12a is expressed in the rectal vesicle of males where they produce a linoleic acid-derived sex pheromone to attract virgin females. 13C-labelling experiments with Urolepis rufipes, a closely related species belonging to the 'Nasonia group', revealed that females, but not males, are able to synthesise linoleic acid. U. rufipes males produce an isoprenoid sex pheromone in the same gland and do not depend on linoleic acid for pheromone production. This suggests that Δ12-desaturases are common in the 'Nasonia group', but acquired a specialised function in chemical communication of those species that use linoleic acid as a pheromone precursor. Phylogenetic analysis suggests that insect Δ12-desaturases have evolved repeatedly from Δ9-desaturases in different insect taxa. Hence, insects have developed a way to produce linoleic acid independent of the omega desaturase subfamily which harbours all of the eukaryotic Δ12-desaturases known so far.


Assuntos
Ácidos Graxos Dessaturases/genética , Proteínas de Insetos/genética , Ácido Linoleico/metabolismo , Atrativos Sexuais/biossíntese , Vespas/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Masculino
9.
Anim Cogn ; 22(5): 851-861, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31222547

RESUMO

Learning ability has been associated with energetic costs that typically become apparent through trade-offs in a wide range of developmental, physiological, and life-history traits. Costs associated with learning ability can be either constitutive or induced, depending on whether they are always incurred or only when information is actively learned and memorized. Using lines of the parasitoid wasp Nasonia vitripennis that were selected for fast associative learning ability, we assessed a range of traits that have previously been identified as potential costs associated with learning. No difference in longevity, lipid reserves, tibia length, egg load, or fecundity was observed between the selected and control lines. All of these traits are considered to potentially lead to constitutive costs in the setup of this study. A gradual reversal to baseline learning after two forms of relaxed selection was indicative of a small constitutive cost of learning ability. We also tested for a trade-off with other memory types formed at later stages, but found no evidence that the mid-term memory that was selected for caused a decrease in performance of other memory types. In conclusion, we observe only one minor effect of a constitutive cost and none of the other costs and trade-offs that are reported in the literature to be of significant value in this case. We, therefore, argue for better inclusion of ecological and economic costs in studies on costs and benefits of learning ability.


Assuntos
Condicionamento Clássico , Aprendizagem , Vespas , Animais , Aprendizagem/fisiologia , Longevidade , Memória , Vespas/parasitologia
10.
BMC Evol Biol ; 18(1): 27, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530013

RESUMO

BACKGROUND: Facultative symbionts are common in eukaryotes and can provide their hosts with significant fitness benefits. Despite the advantage of carrying these microbes, they are typically only found in a fraction of the individuals within a population and are often non-randomly distributed among host populations. It is currently unclear why facultative symbionts are only found in certain host individuals and populations. Here we provide evidence for a mechanism to help explain this phenomenon: that when symbionts interact with non-native host genotypes it can limit the horizontal transfer of symbionts to particular host lineages and populations of related hosts. RESULTS: Using reciprocal transfections of the facultative symbiont Hamiltonella defensa into different pea aphid clones, we demonstrate that particular symbiont strains can cause high host mortality and inhibit offspring production when injected into aphid clones other than their native host lineage. However, once established, the symbiont's ability to protect against parasitoids was not influenced by its origin. We then demonstrate that H. defensa is also more likely to establish a symbiotic relationship with aphid clones from a plant-adapted population (biotype) that typically carry H. defensa in nature, compared to clones from a biotype that does not normally carry this symbiont. CONCLUSIONS: These results provide evidence that certain aphid lineages and populations of related hosts are predisposed to establishing a symbiotic relationship with H. defensa. Our results demonstrate that host-symbiont genotype interactions represent a potential barrier to horizontal transmission that can limit the spread of symbionts, and adaptive traits they carry, to certain host lineages.


Assuntos
Afídeos/microbiologia , Enterobacteriaceae/fisiologia , Simbiose , Adaptação Fisiológica , Animais , Afídeos/genética , Comportamento Alimentar , Fertilidade , Genótipo , Fenótipo , Plantas/parasitologia
11.
BMC Genomics ; 19(1): 892, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526508

RESUMO

BACKGROUND: Selection acts on the phenotype, yet only the genotype is inherited. While both the phenotypic and genotypic response to short-term selection can be measured, the link between these is a major unsolved problem in evolutionary biology, in particular for complex behavioural phenotypes. RESULTS: Here we characterize the genomic and the transcriptomic basis of associative learning ability in the parasitic wasp Nasonia vitripennis and use gene network analysis to link the two. We artificially selected for improved associative learning ability in four independent pairs of lines and identified signatures of selection across the genome. Allele frequency diverged consistently between the selected and control lines in 118 single nucleotide polymorphisms (SNPs), clustering in 51 distinct genomic regions containing 128 genes. The majority of SNPs were found in regulatory regions, suggesting a potential role for gene expression evolution. We therefore sequenced the transcriptomes of selected and control lines and identified 36 consistently differentially expressed transcripts with large changes in expression. None of the differentially expressed genes also showed sequence divergence as a result of selection. Instead, gene network analysis showed many of the genes with consistent allele frequency differences and all of the differentially expressed genes to cluster in a single co-expression network. At a functional level, both genomic and transcriptomic analyses implicated members of gene networks known to be involved in neural plasticity and cognitive processes. CONCLUSIONS: Taken together, our results reveal how specific cognitive abilities can readily respond to selection via a complex interplay between regulatory and sequence evolution.


Assuntos
Evolução Molecular , Aprendizagem , Sequências Reguladoras de Ácido Nucleico/genética , Seleção Genética , Vespas/genética , Alelos , Animais , Sequência de Bases , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Variação Genética , Genoma de Inseto , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
12.
Glob Chang Biol ; 24(10): 4784-4796, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851186

RESUMO

Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human-impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance, and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two Principal Component Analysis (PCA) ordination axes related to habitat structure (i.e., forest or nonforest) and human impact level (i.e., addition of man-made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in nonforested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in nonforested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and nonforested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species.


Assuntos
Biodiversidade , Ilhas , Répteis , Animais , Biota , Conservação dos Recursos Naturais , Ecossistema , Florestas , Humanos , Índias Ocidentais
14.
Bioscience ; 68(4): 281-287, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29662248

RESUMO

Increasing surface temperatures, Arctic sea-ice loss, and other evidence of anthropogenic global warming (AGW) are acknowledged by every major scientific organization in the world. However, there is a wide gap between this broad scientific consensus and public opinion. Internet blogs have strongly contributed to this consensus gap by fomenting misunderstandings of AGW causes and consequences. Polar bears (Ursus maritimus) have become a "poster species" for AGW, making them a target of those denying AGW evidence. Here, focusing on Arctic sea ice and polar bears, we show that blogs that deny or downplay AGW disregard the overwhelming scientific evidence of Arctic sea-ice loss and polar bear vulnerability. By denying the impacts of AGW on polar bears, bloggers aim to cast doubt on other established ecological consequences of AGW, aggravating the consensus gap. To counter misinformation and reduce this gap, scientists should directly engage the public in the media and blogosphere.

15.
J Anim Ecol ; 87(4): 933-944, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29931769

RESUMO

It has been widely recognized that species show extensive variation in form and function. Based on species' attributes, they can be positioned along major axes of variation, which are often defined by life-history traits, such as number of offspring, age at maturity or generation time. Less emphasis has been given in this respect to tolerance traits, especially to resistance to abiotic stress conditions, which often determine community (dis)assembly and distribution. Soil fauna species distribution is governed to a large extent by environmental conditions that filter communities according to functional traits, such as abiotic stress tolerance, morphology and body size. Trait-based approaches have been successfully used to predict soil biota responses to abiotic stress. It remains unclear, though, how these traits relate to life-history traits that determine individual performance, that is, reproduction and survival. Here, we analyse patterns in multidimensional trait distribution of dominant groups of soil fauna, that is, Isopoda, Gastropoda and Collembola, known to be important to the functioning of ecosystems. We compiled trait information from existing literature, trait databases and supplementary measurements. We looked for common patterns in major axes of trait variation and tested if vertical distribution of species in the soil explained trait variation based on three components of trait diversity (trait richness, evenness and divergence). Our results showed that two to three axes of variation structured the trait space of life-history and tolerance traits in each of the taxonomic groups and that vertical distribution in soil explained the main axis of trait variation. We also found evidence of environmental filtering on soil fauna along the vertical soil distribution, with lower trait richness and trait divergence in soil-dwelling than in surface-living species. Our study was partially limited by the lack of detailed trait measurements for the selected taxonomic groups. In this regard, there is an urgent need for standardized trait databases across invertebrate groups to improve trait-based diversity analysis and fill gaps in the mechanistic understanding behind trait distribution, trait filtering and the link with species fitness and performance.


Assuntos
Distribuição Animal , Artrópodes/fisiologia , Gastrópodes/fisiologia , Características de História de Vida , Animais , Isópodes/fisiologia , Solo
16.
Oecologia ; 186(2): 311-322, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29224117

RESUMO

Temperature extremes are predicted to increase in frequency, intensity and duration under global warming and are believed to significantly affect community composition and functioning. However, the effect of extreme climatic events on communities remains difficult to predict, especially because species can show dissimilar responses to abiotic changes, which may affect the outcome of species interactions. To anticipate community responses we need knowledge on within and among species variation in stress tolerance. We exposed a soil arthropod community to experimental heat waves in the field and measured heat tolerance of species of different trophic levels from heated and control plots. We measured the critical thermal maximum (CTmax) of individuals to estimate inter- and intraspecific variation in heat tolerance in this community, and how this was affected by experimental heat waves. We found interspecific variation in heat tolerance, with the most abundant prey species, the springtail Isotoma riparia, being more sensitive to high temperatures than its predators (various spider species). Moreover, intraspecific variation in CTmax was substantial, suggesting that individuals within a single species were unequally affected by heat extremes. However, heat tolerance of species did not increase after being exposed to an experimental heat wave. We conclude that interspecific variation in tolerance traits potentially causes trophic mismatches during extreme events, but that intraspecific variation could lessen these effects by enabling partial survival of populations. Therefore, ecophysiological traits can provide a better understanding of abiotic effects on communities, not only within taxonomic or functional groups, but also when comparing different trophic levels.


Assuntos
Artrópodes , Termotolerância , Animais , Mudança Climática , Temperatura Alta , Solo
17.
J Chem Ecol ; 44(10): 894-904, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066038

RESUMO

A recent study showed that a wingless parasitoid, Gelis agilis, exhibits a suite of ant-like traits that repels attack from wolf spiders. When agitated, G. agilis secreted 6-methyl-5-hepten-2-one (sulcatone), which a small number of ant species produce as an alarm/panic pheromone. Here, we tested four Gelis parasitoid species, occurring in the same food chain and microhabitats, for the presence of sulcatone and conducted two-species choice bioassays with wolf spiders to determine their degree of susceptibility to attack. All four Gelis species, including both winged and wingless species, produced sulcatone, whereas a closely related species, Acrolyta nens, and the more distantly related Cotesia glomerata, did not. In two-choice bioassays, spiders overwhelmingly rejected the wingless Gelis species, preferring A. nens and C. glomerata. However, spiders exhibited no preference for either A. nens or G. areator, both of which are winged. Wingless gelines exhibited several ant-like traits, perhaps accounting for the reluctance of spiders to attack them. On the other hand, despite producing sulcatone, the winged G. areator more closely resembles other winged cryptines like A. nens, making it harder for spiders to distinguish between these two species. C. glomerata was also preferred by spiders over A. nens, suggesting that other non-sulcatone producing cryptines nevertheless possess traits that make them less attractive as prey. Phylogenetic reconstruction of the Cryptinae reveals that G. hortensis and G. proximus are 'sister'species, with G. agilis, and G.areator in particular evolving along more distant trajectories. We discuss the possibility that wingless Gelis species have evolved a suite of ant-like traits as a form, of mimicry to repel predators on the ground.


Assuntos
Formigas/anatomia & histologia , Formigas/fisiologia , Aranhas/fisiologia , Asas de Animais , Animais , Formigas/classificação , Formigas/metabolismo , Bioensaio , Cetonas/metabolismo , Cetonas/farmacologia , Filogenia , Comportamento Predatório/efeitos dos fármacos , Aranhas/efeitos dos fármacos
18.
BMC Genomics ; 18(1): 493, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659179

RESUMO

BACKGROUND: Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle. RESULTS: We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster. CONCLUSIONS: The expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.


Assuntos
Artrópodes/genética , Artrópodes/fisiologia , Genômica , Solo , Animais , Antibacterianos/biossíntese , Artrópodes/metabolismo , Rearranjo Gênico , Transferência Genética Horizontal , Família Multigênica/genética , Filogenia
19.
J Chem Ecol ; 43(9): 911-919, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28823016

RESUMO

Many ecological interactions in communities take place between consumers and the organisms they feed on. Continuous surplus of specific nutritional compounds in the diet may lead to evolutionary changes in the metabolic capacity of the consumer, leaving the biosynthesis of such compounds prone to genetic decay and render organisms auxotrophic. A nutrient that is essential to many organisms is the unsaturated fatty acid, linoleic acid (LA; 18:2n-6), which is important in the maintenance of cell membrane fluidity and as a precursor for signaling molecules. LA is readily synthesized in bacteria, protozoa and plants, but it was long thought that all animals lack this ability. Although the majority of animals lack the ability for LA biosynthesis, an increasing number of studies have shown that LA is commonly synthesized in arthropods. Here, we investigated a basal hexapod group, Collembola, to shed light on early evolution of LA synthetic ability in arthropods and its relation to dietary composition. We use stable isotope labeling to detect biosynthesis of LA in Collembola fed with 13C-OA oleic acid (OA; 18:1n-9), a precursor of LA. Our data demonstrate that LA biosynthesis is common among Collembola with 10 out of 16 tested species being able to synthesize LA and 4 species lacking this ability. However, we did not find clear evidence for a relationship between LA synthetic ability and the natural diet of species. Thus, the selective pressures underlying LA biosynthesis might be species-specific and further research will shed new light on understanding this evolutionary process.


Assuntos
Artrópodes/fisiologia , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico/metabolismo , Ácido Oleico/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Especificidade da Espécie
20.
Oecologia ; 174(3): 967-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24169941

RESUMO

Coexistence of species sharing the same resources is often possible if species are phylogenetically divergent in resource acquisition and allocation traits, decreasing competition between them. Developmental and life-history traits related to resource use are influenced by environmental conditions such as temperature, but thermal trait responses may differ among species. An increase in ambient temperature may, therefore, affect trait divergence within a community, and potentially species coexistence. Parasitoids are interesting models to test this hypothesis, because multiple species commonly attack the same host, and employ divergent larval and adult host use strategies. In particular, development mode (arrested or continued host growth following parasitism) has been recognized as a major organiser of parasitoid life histories. Here, we used a comparative trait-based approach to determine thermal responses of development time, body mass, egg load, metabolic rate and energy use of the coexisting Drosophila parasitoids Asobara tabida, Leptopilina heterotoma, Trichopria drosophilae and Spalangia erythromera. We compared trait values between species and development modes, and calculated trait divergence in response to temperature, using functional diversity indices. Parasitoids differed in their thermal response for dry mass, metabolic rate and lipid use throughout adult life, but only teneral lipid reserves and egg load were affected by developmental mode. Species-specific trait responses to temperature were probably determined by their adaptations in resource use (e.g. lipogenesis or ectoparasitism). Overall, trait values of parasitoid species converged at the higher temperature. Our results suggest that local effects of warming could affect host resource partitioning by reducing trait diversity in communities.


Assuntos
Drosophila melanogaster/parasitologia , Himenópteros/crescimento & desenvolvimento , Temperatura , Animais , Metabolismo Basal , Tamanho Corporal , Feminino , Aquecimento Global , Interações Hospedeiro-Parasita , Himenópteros/metabolismo , Larva , Metabolismo dos Lipídeos , Oviparidade , Óvulo , Fenótipo , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA