Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 141(3): 458-71, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20416930

RESUMO

Reversible S-palmitoylation of cysteine residues critically controls transient membrane tethering of peripheral membrane proteins. Little is known about how the palmitoylation machinery governs their defined localization and function. We monitored the spatially resolved reaction dynamics and substrate specificity of the core mammalian palmitoylation machinery using semisynthetic substrates. Palmitoylation is detectable only on the Golgi, whereas depalmitoylation occurs everywhere in the cell. The reactions are not stereoselective and lack any primary consensus sequence, demonstrating that substrate specificity is not essential for de-/repalmitoylation. Both palmitate attachment and removal require seconds to accomplish. This reaction topography and rapid kinetics allows the continuous redirection of mislocalized proteins via the post-Golgi sorting apparatus. Unidirectional secretion ensures the maintenance of a proper steady-state protein distribution between the Golgi and the plasma membrane, which are continuous with endosomes. This generic spatially organizing system differs from conventional receptor-mediated targeting mechanisms and efficiently counteracts entropy-driven redistribution of palmitoylated peripheral membrane proteins over all membranes.


Assuntos
Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Lipoilação , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
2.
Bioorg Chem ; 138: 106615, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244229

RESUMO

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.


Assuntos
Antiprotozoários , Doença de Chagas , Trypanosoma cruzi , Humanos , Antiparasitários/farmacologia , Antiprotozoários/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Colina/uso terapêutico
3.
Molecules ; 26(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299479

RESUMO

A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.


Assuntos
Antiparasitários/síntese química , Antiparasitários/farmacologia , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Fosfolipídeos/farmacologia , Doença de Chagas/parasitologia , Química Click , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose/parasitologia , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
4.
Mar Drugs ; 15(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333084

RESUMO

As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Organismos Aquáticos/metabolismo , Fungos/metabolismo , Hypocreales/metabolismo , Metabolismo Secundário/fisiologia , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Meios de Cultura/metabolismo , Fermentação/fisiologia , Humanos
5.
Proc Natl Acad Sci U S A ; 108(17): 6805-10, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21415367

RESUMO

In Biology Oriented Synthesis the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is met by the structurally complex scaffolds of natural products (NPs) selected in evolution. The synthesis of NP-inspired compound collections approaching the complexity of NPs calls for the development of efficient synthetic methods. We have developed a one pot 4-7 step synthesis of mono-, bi-, and tricyclic oxepanes that resemble the core scaffolds of numerous NPs with diverse bioactivities. This sequence entails a ring-closing ene-yne metathesis reaction as key step and makes productive use of polymer-immobilized scavenger reagents. Biological profiling of a corresponding focused compound collection in a reporter gene assay monitoring for Wnt-signaling modulation revealed active Wntepanes. This unique class of small-molecule activators of the Wnt pathway modulates the van-Gogh-like receptor proteins (Vangl), which were previously identified in noncanonical Wnt signaling, and acts in synergy with the canonical activator protein (Wnt-3a).


Assuntos
Compostos Heterocíclicos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Proteína Wnt3 , Proteína Wnt3A
6.
Chembiochem ; 14(18): 2492-9, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24151156

RESUMO

Growing resistance to antibiotics, as well as newly emerging pathogens, stimulate the investigation of antimicrobial peptides (AMPs) as therapeutic agents. Here, we report a new library design concept based on a stochastic distribution of natural AMP amino acid sequences onto half-length synthetic peptides. For these compounds, a non-natural motif of alternating D- and L-backbone stereochemistry of the peptide chain predisposed for ß-helix formation was explored. Synthetic D-/L-peptides with permuted half-length sequences were delineated from a full-length starter sequence and covalently recombined to create two-dimensional compound arrays for antibacterial screening. Using the natural AMP magainin as a seed sequence, we identified and iteratively optimized hit compounds showing high antimicrobial activity against Gram-positive and Gram-negative bacteria with low hemolytic activity. Cryo-electron microscopy characterized the membrane-associated mechanism of action of the new D-/L-peptide antibiotics.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Humanos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Técnicas de Síntese em Fase Sólida , Processos Estocásticos
7.
AIDS Res Ther ; 10(1): 1, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23286882

RESUMO

BACKGROUND: Despite progress in the development of combined antiretroviral therapies (cART), HIV infection remains a significant challenge for human health. Current problems of cART include multi-drug-resistant virus variants, long-term toxicity and enormous treatment costs. Therefore, the identification of novel effective drugs is urgently needed. METHODS: We developed a straightforward screening approach for simultaneously evaluating the sensitivity of multiple HIV gag-pol mutants to antiviral drugs in one assay. Our technique is based on multi-colour lentiviral self-inactivating (SIN) LeGO vector technology. RESULTS: We demonstrated the successful use of this approach for screening compounds against up to four HIV gag-pol variants (wild-type and three mutants) simultaneously. Importantly, the technique was adapted to Biosafety Level 1 conditions by utilising ecotropic pseudotypes. This allowed upscaling to a large-scale screening protocol exploited by pharmaceutical companies in a successful proof-of-concept experiment. CONCLUSIONS: The technology developed here facilitates fast screening for anti-HIV activity of individual agents from large compound libraries. Although drugs targeting gag-pol variants were used here, our approach permits screening compounds that target several different, key cellular and viral functions of the HIV life-cycle. The modular principle of the method also allows the easy exchange of various mutations in HIV sequences. In conclusion, the methodology presented here provides a valuable new approach for the identification of novel anti-HIV drugs.

8.
J Med Chem ; 66(15): 10252-10264, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37471520

RESUMO

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei, is one of the neglected tropical diseases with a continuing need for new medication. We here describe the discovery of 5-phenylpyrazolopyrimidinone analogs as a novel series of phenotypic antitrypanosomal agents. The most potent compound, 30 (NPD-2975), has an in vitro IC50 of 70 nM against T. b. brucei with no apparent toxicity against human MRC-5 lung fibroblasts. Showing good physicochemical properties, low toxicity potential, acceptable metabolic stability, and other pharmacokinetic features, 30 was further evaluated in an acute mouse model of T. b. brucei infection. After oral dosing at 50 mg/kg twice per day for five consecutive days, all infected mice were cured. Given its good drug-like properties and high in vivo antitrypanosomal potential, the 5-phenylpyrazolopyrimidinone analog 30 represents a promising lead for future drug development to treat HAT.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Camundongos , Humanos , Animais , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Descoberta de Drogas , Desenvolvimento de Medicamentos
9.
Viruses ; 15(5)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243214

RESUMO

During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/metabolismo , Reposicionamento de Medicamentos/métodos
10.
J Med Chem ; 66(22): 15230-15255, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37921561

RESUMO

Broad-spectrum anti-infective chemotherapy agents with activity against Trypanosomes, Leishmania, and Mycobacterium tuberculosis species were identified from a high-throughput phenotypic screening program of the 456 compounds belonging to the Ty-Box, an in-house industry database. Compound characterization using machine learning approaches enabled the identification and synthesis of 44 compounds with broad-spectrum antiparasitic activity and minimal toxicity against Trypanosoma brucei, Leishmania Infantum, and Trypanosoma cruzi. In vitro studies confirmed the predictive models identified in compound 40 which emerged as a new lead, featured by an innovative N-(5-pyrimidinyl)benzenesulfonamide scaffold and promising low micromolar activity against two parasites and low toxicity. Given the volume and complexity of data generated by the diverse high-throughput screening assays performed on the compounds of the Ty-Box library, the chemoinformatic and machine learning tools enabled the selection of compounds eligible for further evaluation of their biological and toxicological activities and aided in the decision-making process toward the design and optimization of the identified lead.


Assuntos
Leishmania infantum , Trypanosoma brucei brucei , Trypanosoma cruzi , Ensaios de Triagem em Larga Escala , Antiparasitários
11.
J Am Chem Soc ; 134(20): 8480-6, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22475347

RESUMO

We have characterized rationally designed and optimized analogues of the actin-stabilizing natural products jasplakinolide and chondramide C. Efficient actin staining was achieved in fixed permeabilized and non-permeabilized cells using different combinations of dye and linker length, thus highlighting the degree of molecular flexibility of the natural product scaffold. Investigations into synthetically accessible, non-toxic analogues have led to the characterization of a powerful cell-permeable probe to selectively image static, long-lived actin filaments against dynamic F-actin and monomeric G-actin populations in live cells, with negligible disruption of rapid actin dynamics.


Assuntos
Actinas/ultraestrutura , Amanita/química , Proteínas de Bactérias/química , Produtos Biológicos/química , Depsipeptídeos/química , Corantes Fluorescentes/química , Actinas/análise , Linhagem Celular , Sobrevivência Celular , Humanos , Microscopia de Fluorescência , Coloração e Rotulagem/métodos
12.
Biomed Pharmacother ; 151: 113104, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643072

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) has continuously evolved, resulting in the emergence of several variants of concern (VOCs). To study mechanisms of viral entry and potentially identify specific inhibitors, we pseudotyped lentiviral vectors with different SARS-CoV-2 VOC spike variants (D614G, Alpha, Beta, Delta, Omicron/BA.1), responsible for receptor binding and membrane fusion. These SARS-CoV-2 lentiviral pseudoviruses were applied to screen 774 FDA-approved drugs. For the assay we decided to use CaCo2 cells, since they equally allow cell entry through both the direct membrane fusion pathway mediated by TMPRSS2 and the endocytosis pathway mediated by cathepsin-L. The active molecules which showed stronger differences in their potency to inhibit certain SARS-CoV-2 VOCs included antagonists of G-protein coupled receptors, like phenothiazine-derived antipsychotic compounds such as Chlorpromazine, with highest activity against the Omicron pseudovirus. In general, our data showed that the various VOCs differ in their preferences for cell entry, and we were able to identify synergistic combinations of inhibitors. Notably, Omicron singled out by relying primarily on the endocytosis pathway while Delta preferred cell entry via membrane fusion. In conclusion, our data provide new insights into different entry preferences of SARS-CoV-2 VOCs, which might help to identify new drug targets.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Células CACO-2 , Avaliação Pré-Clínica de Medicamentos , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Front Toxicol ; 4: 864441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516525

RESUMO

Application of adverse outcome pathways (AOP) and integration of quantitative in vitro to in vivo extrapolation (QIVIVE) may support the paradigm shift in toxicity testing to move from apical endpoints in test animals to more mechanism-based in vitro assays. Here, we developed an AOP of proximal tubule injury linking a molecular initiating event (MIE) to a cascade of key events (KEs) leading to lysosomal overload and ultimately to cell death. This AOP was used as a case study to adopt the AOP concept for systemic toxicity testing and risk assessment based on in vitro data. In this AOP, nephrotoxicity is thought to result from receptor-mediated endocytosis (MIE) of the chemical stressor, disturbance of lysosomal function (KE1), and lysosomal disruption (KE2) associated with release of reactive oxygen species and cytotoxic lysosomal enzymes that induce cell death (KE3). Based on this mechanistic framework, in vitro readouts reflecting each KE were identified. Utilizing polymyxin antibiotics as chemical stressors for this AOP, the dose-response for each in vitro endpoint was recorded in proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) in order to (1) experimentally support the sequence of key events (KEs), to (2) establish quantitative relationships between KEs as a basis for prediction of downstream KEs based on in vitro data reflecting early KEs and to (3) derive suitable in vitro points of departure for human risk assessment. Time-resolved analysis was used to support the temporal sequence of events within this AOP. Quantitative response-response relationships between KEs established from in vitro data on polymyxin B were successfully used to predict in vitro toxicity of other polymyxin derivatives. Finally, a physiologically based kinetic (PBK) model was utilized to transform in vitro effect concentrations to a human equivalent dose for polymyxin B. The predicted in vivo effective doses were in the range of therapeutic doses known to be associated with a risk for nephrotoxicity. Taken together, these data provide proof-of-concept for the feasibility of in vitro based risk assessment through integration of mechanistic endpoints and reverse toxicokinetic modelling.

14.
Patterns (N Y) ; 3(3): 100433, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35510183

RESUMO

The high number of failed pre-clinical and clinical studies for compounds targeting Alzheimer disease (AD) has demonstrated that there is a need to reassess existing strategies. Here, we pursue a holistic, mechanism-centric drug repurposing approach combining computational analytics and experimental screening data. Based on this integrative workflow, we identified 77 druggable modifiers of tau phosphorylation (pTau). One of the upstream modulators of pTau, HDAC6, was screened with 5,632 drugs in a tau-specific assay, resulting in the identification of 20 repurposing candidates. Four compounds and their known targets were found to have a link to AD-specific genes. Our approach can be applied to a variety of AD-associated pathophysiological mechanisms to identify more repurposing candidates.

15.
Pharmaceutics ; 14(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36559094

RESUMO

Isoform-selective histone deacetylase (HDAC) inhibition is promoted as a rational strategy to develop safer anti-cancer drugs compared to non-selective HDAC inhibitors. Despite this presumed benefit, considerably more non-selective HDAC inhibitors have undergone clinical trials. In this report, we detail the design and discovery of potent HDAC inhibitors, with 1-benzhydryl piperazine as a surface recognition group, that differ in hydrocarbon linker. In vitro HDAC screening identified two selective HDAC6 inhibitors with nanomolar IC50 values, as well as two non-selective nanomolar HDAC inhibitors. Structure-based molecular modeling was employed to study the influence of linker chemistry of synthesized inhibitors on HDAC6 potency. The breast cancer cell lines (MDA-MB-231 and MCF-7) were used to evaluate compound-mediated in vitro anti-cancer, anti-migratory, and anti-invasive activities. Experiments on the zebrafish MDA-MB-231 xenograft model revealed that a novel non-selective HDAC inhibitor with a seven-carbon-atom linker exhibits potent anti-tumor, anti-metastatic, and anti-angiogenic effects when tested at low micromolar concentrations.

16.
J Med Chem ; 65(13): 9011-9033, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675511

RESUMO

The optimization of compounds with multiple targets is a difficult multidimensional problem in the drug discovery cycle. Here, we present a systematic, multidisciplinary approach to the development of selective antiparasitic compounds. Computational fragment-based design of novel pteridine derivatives along with iterations of crystallographic structure determination allowed for the derivation of a structure-activity relationship for multitarget inhibition. The approach yielded compounds showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L. major PTR1, and selective submicromolar inhibition of parasite dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining design for polypharmacology with a property-based on-parasite optimization, we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining their target inhibition. Our results provide a basis for the further development of pteridine-based compounds, and we expect our multitarget approach to be generally applicable to the design and optimization of anti-infective agents.


Assuntos
Leishmania major , Oxirredutases , Tetra-Hidrofolato Desidrogenase , Trypanosoma brucei brucei , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Pteridinas/química , Pteridinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
17.
Sci Data ; 9(1): 405, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831315

RESUMO

Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos
18.
Microorganisms ; 9(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34442660

RESUMO

Staphylotrichum longicolleum FW57 (DSM105789) is a prolific chitinolytic fungus isolated from wood, with a chitinase activity of 0.11 ± 0.01 U/mg. We selected this strain for genome sequencing and annotation, and compiled its growth characteristics on four different chitinous substrates as well as two agro-industrial waste products. We found that the enzymatic mixture secreted by FW57 was not only able to digest pre-treated sugarcane bagasse, but also untreated sugarcane bagasse and maize leaves. The efficiency was comparable to a commercial enzymatic cocktail, highlighting the potential of the S. longicolleum enzyme mixture as an alternative pretreatment method. To further characterize the enzymes, which efficiently digested polymers such as cellulose, hemicellulose, pectin, starch, and lignin, we performed in-depth mass spectrometry-based secretome analysis using tryptic peptides from in-gel and in-solution digestions. Depending on the growth conditions, we were able to detect from 442 to 1092 proteins, which were annotated to identify from 134 to 224 putative carbohydrate-active enzymes (CAZymes) in five different families: glycoside hydrolases, auxiliary activities, carbohydrate esterases, polysaccharide lyases, glycosyl transferases, and proteins containing a carbohydrate-binding module, as well as combinations thereof. The FW57 enzyme mixture could be used to replace commercial enzyme cocktails for the digestion of agro-residual substrates.

19.
Biotechnol Biofuels ; 14(1): 74, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743779

RESUMO

BACKGROUND: The transition to a biobased economy involving the depolymerization and fermentation of renewable agro-industrial sources is a challenge that can only be met by achieving the efficient hydrolysis of biomass to monosaccharides. In nature, lignocellulosic biomass is mainly decomposed by fungi. We recently identified six efficient cellulose degraders by screening fungi from Vietnam. RESULTS: We characterized a high-performance cellulase-producing strain, with an activity of 0.06 U/mg, which was identified as a member of the Fusarium solani species complex linkage 6 (Fusarium metavorans), isolated from mangrove wood (FW16.1, deposited as DSM105788). The genome, representing nine potential chromosomes, was sequenced using PacBio and Illumina technology. In-depth secretome analysis using six different synthetic and artificial cellulose substrates and two agro-industrial waste products identified 500 proteins, including 135 enzymes assigned to five different carbohydrate-active enzyme (CAZyme) classes. The F. metavorans enzyme cocktail was tested for saccharification activity on pre-treated sugarcane bagasse, as well as untreated sugarcane bagasse and maize leaves, where it was complemented with the commercial enzyme mixture Accellerase 1500. In the untreated sugarcane bagasse and maize leaves, initial cell wall degradation was observed in the presence of at least 196 µg/mL of the in-house cocktail. Increasing the dose to 336 µg/mL facilitated the saccharification of untreated sugarcane biomass, but had no further effect on the pre-treated biomass. CONCLUSION: Our results show that F. metavorans DSM105788 is a promising alternative pre-treatment for the degradation of agro-industrial lignocellulosic materials. The enzyme cocktail promotes the debranching of biopolymers surrounding the cellulose fibers and releases reduced sugars without process disadvantages or loss of carbohydrates.

20.
Sci Data ; 8(1): 70, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637768

RESUMO

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic, in which acute respiratory infections are associated with high socio-economic burden. We applied high-content screening to a well-defined collection of 5632 compounds including 3488 that have undergone previous clinical investigations across 600 indications. The compounds were screened by microscopy for their ability to inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2. The primary screen identified 258 hits that inhibited cytopathicity by more than 75%, most of which were not previously known to be active against SARS-CoV-2 in vitro. These compounds were tested in an eight-point dose response screen using the same image-based cytopathicity readout. For the 67 most active molecules, cytotoxicity data were generated to confirm activity against SARS-CoV-2. We verified the ability of known inhibitors camostat, nafamostat, lopinavir, mefloquine, papaverine and cetylpyridinium to reduce the cytopathic effects of SARS-CoV-2, providing confidence in the validity of the assay. The high-content screening data are suitable for reanalysis across numerous drug classes and indications and may yield additional insights into SARS-CoV-2 mechanisms and potential therapeutic strategies.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Benzamidinas , COVID-19 , Células CACO-2 , Cetilpiridínio , Avaliação Pré-Clínica de Medicamentos , Ésteres , Guanidinas , Humanos , Lopinavir , Mefloquina , Papaverina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA