Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(7): 2319-24, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308425

RESUMO

Deamination of nucleobases in DNA and RNA results in the formation of xanthine (X), hypoxanthine (I), oxanine, and uracil, all of which are miscoding and mutagenic in DNA and can interfere with RNA editing and function. Among many forms of nucleic acid damage, deamination arises from several unrelated mechanisms, including hydrolysis, nitrosative chemistry, and deaminase enzymes. Here we present a fourth mechanism contributing to the burden of nucleobase deamination: incorporation of hypoxanthine and xanthine into DNA and RNA caused by defects in purine nucleotide metabolism. Using Escherichia coli and Saccharomyces cerevisiae with defined mutations in purine metabolism in conjunction with analytical methods for quantifying deaminated nucleobases in DNA and RNA, we observed large increases (up to 600-fold) in hypoxanthine in both DNA and RNA in cells unable to convert IMP to XMP or AMP (IMP dehydrogenase, guaB; adenylosuccinate synthetase, purA, and ADE12), and unable to remove dITP/ITP and dXTP/XTP from the nucleotide pool (dITP/XTP pyrophosphohydrolase, rdgB and HAM1). Conversely, modest changes in xanthine levels were observed in RNA (but not DNA) from E. coli lacking purA and rdgB and the enzyme converting XMP to GMP (GMP synthetase, guaA). These observations suggest that disturbances in purine metabolism caused by known genetic polymorphisms could increase the burden of mutagenic deaminated nucleobases in DNA and interfere with gene expression and RNA function, a situation possibly exacerbated by the nitrosative stress of concurrent inflammation. The results also suggest a mechanistic basis for the pathophysiology of human inborn errors of purine nucleotide metabolism.


Assuntos
DNA/metabolismo , Hipoxantina/metabolismo , Nucleotídeos de Purina/metabolismo , RNA/metabolismo , Xantina/metabolismo
2.
Nitric Oxide ; 27(3): 161-8, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22728703

RESUMO

Nitric oxide (NO) plays key roles in cell signaling and physiology, with diverse functions mediated by NO concentrations varying over three orders-of-magnitude. In spite of this critical concentration dependence, current approaches to NO delivery in vitro result in biologically irrelevant and poorly controlled levels, with hyperoxic conditions imposed by ambient air. To solve these problems, we developed a system for controlled delivery of NO and O(2) over large concentration ranges to mimic biological conditions. Here we describe the fabrication, operation and calibration of the delivery system. We then describe applications for delivery of NO and O(2) into cell culture media, with a comparison of experimental results and predictions from mass transfer models that predict the steady-state levels of various NO-derived reactive species. We also determined that components of culture media do not affect the steady-state levels of NO or O(2) in the device. This system provides critical control of NO delivery for in vitro models of NO biology and chemistry.


Assuntos
Técnicas de Cultura de Células/métodos , Óxido Nítrico/administração & dosagem , Oxigênio/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Humanos , Modelos Biológicos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxigênio/química , Oxigênio/metabolismo
3.
Chem Res Toxicol ; 23(6): 1076-88, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20377178

RESUMO

2-Amino-3-methylimidazo[1,2-d]naphthalene (cIQ) is a carbocyclic analogue of the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in which a naphthalene ring system replaces the quinoline unit of IQ. The activity of cIQ in Ames Salmonella typhimurium tester strain TA98 is known to be 4-5 orders of magnitude lower than IQ. cIQ undergoes efficient bioactivation with rat liver microsomes. The C8-dGuo adduct was formed when calf thymus DNA was treated with the N-hydroxy-cIQ metabolite and either acetic anhydride or extracts from cells that overexpress N-acetyl transferase (NAT). These studies indicate that bioactivation, the stability of the N-hydroxylamine ester, and the reactivity of the nitrenium ion with DNA of cIQ are similar to IQ and that none of these factors account for the differences in mutagenic potency of these analogues in Ames assays. Oligonucleotides were synthesized that contain the C8-dGuo adduct of cIQ in the frameshift-prone CG-dinucleotide repeat unit of the NarI recognition sequence. We have examined the in vitro translesion synthesis of this adduct and have found it to be a strong replication block to Escherichia coli DNA polymerase I, Klenow fragment exo(-) (Kf(-)), E. coli DNA polymerase II exo(-) (pol II(-)), and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Previous studies by Fuchs and co-workers identified E. coli pol II as the polymerase responsible for two-base deletions of the C8-dGuo adduct of N-acetyl-2-aminofluorene in the NarI sequence. Our observation that pol II is strongly inhibited by the C8-dGuo adduct of cIQ suggests that one of the other SOS inducible polymerases (E. coli pol IV or pol V) is required for its bypass, and this accounts for the greatly attenuated mutagenicity in the Ames assays as compared with IQ.


Assuntos
Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , DNA/metabolismo , Mutagênicos/metabolismo , Mutagênicos/farmacologia , Animais , Benzimidazóis/química , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/farmacologia , Bovinos , Replicação do DNA/efeitos dos fármacos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Mutagênicos/química , Ressonância Magnética Nuclear Biomolecular , Quinolinas/química , Quinolinas/metabolismo , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley
4.
Biochemistry ; 46(29): 8498-516, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17602664

RESUMO

The conformations of C8-dG adducts of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) positioned in the C-X1-G, G-X2-C, and C-X3-C contexts in the C-G1-G2-C-G3-C-C recognition sequence of the NarI restriction enzyme were compared, using the oligodeoxynucleotides 5'-d(CTCXGCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', 5'-d(CTCGXCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', and 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' (X is the C8-dG adduct of IQ). These were the NarIIQ1, NarIIQ2, and NarIIQ3 duplexes, respectively. In each instance, the glycosyl torsion angle chi for the IQ-modified dG was in the syn conformation. The orientations of the IQ moieties were dependent upon the conformations of torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)], which were monitored by the patterns of 1H NOEs between the IQ moieties and the DNA in the three sequence contexts. The conformational states of IQ torsion angles alpha' and beta' were predicted from the refined structures of the three adducts obtained from restrained molecular dynamics calculations, utilizing simulated annealing protocols. For the NarIIQ1 and NarIIQ2 duplexes, the alpha' torsion angles were predicted to be -176 +/- 8 degrees and -160 +/- 8 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle alpha' was predicted to be 159 +/- 7 degrees . Likewise, for the NarIIQ1 and NarIIQ2 duplexes, the beta' torsion angles were predicted to be -152 +/- 8 degrees and -164 +/- 7 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle beta' was predicted to be -23 +/- 8 degrees . Consequently, the conformations of the IQ adduct in the NarIIQ1 and NarIIQ2 duplexes were similar, with the IQ methyl protons and IQ H4 and H5 protons facing outward in the minor groove, whereas in the NarIIQ3 duplex, the IQ methyl protons and the IQ H4 and H5 protons faced into the DNA duplex, facilitating the base-displaced intercalated orientation of the IQ moiety [Wang, F., Elmquist, C. E., Stover, J. S., Rizzo, C. J., and Stone, M. P. (2006) J. Am. Chem. Soc. 128, 10085-10095]. In contrast, for the NarIIQ1 and NarIIQ2 duplexes, the IQ moiety remained in the minor groove. These sequence-dependent differences suggest that base-displaced intercalation of the IQ adduct is favored when both the 5'- and 3'-flanking nucleotides in the complementary strand are guanines. These conformational differences may correlate with sequence-dependent differences in translesion replication.


Assuntos
Adutos de DNA/química , Desoxiguanosina/análogos & derivados , Desoxirribonucleases de Sítio Específico do Tipo II/química , Mutagênicos/química , Quinolinas/química , Pareamento de Bases , Sequência de Bases , Desoxiguanosina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Chem Res Toxicol ; 20(3): 445-54, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17311423

RESUMO

2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a highly mutagenic heterocyclic amine found in cooked meats. The major DNA adduct of IQ is at the C8-position of dGuo. We have previously reported the incorporation of the C8-IQ adduct into oligonucleotides, namely, the G1-position of codon 12 of the N-ras oncogene sequence (G1G2T) and the G3-position of the NarI recognition sequence (G1G2CG3CC) (Elmquist et al. (2004) J. Am. Chem. Soc. 126, 11189-11201). Ultraviolet spectroscopy and circular dichroism studies indicated that the conformation of the adduct in the two oligonucleotides was different, and they were assigned as groove-bound and base-displaced intercalated, respectively. The conformation of the latter was subsequently confirmed through NMR and restrained molecular dynamics studies (Wang et al. (2006) J. Am. Chem. Soc. 128, 10085-10095). We report here the incorporation of the C8-IQ adduct into the G1- and G2-positions of the NarI sequence. A complete analysis of the UV, CD, and NMR chemical shift data for the IQ protons are consistent with the IQ adduct adopting a minor groove-bound conformation at the G1- and G2-positions of the NarI sequence. To further correlate the spectroscopic data with the adduct conformation, the C8-aminofluorene (AF) adduct of dGuo was also incorporated into the NarI sequence; previous NMR studies demonstrated that the AF-modified oligonucleotides were in a sequence-dependent conformational exchange between major groove-bound and base-displaced intercalated conformations. The spectroscopic data for the IQ- and AF-modified oligonucleotides are compared. The sequence-dependent conformational preferences are likely to play a key role in the repair and mutagenicity of C8-arylamine adducts.


Assuntos
Carcinógenos/química , Desoxiguanosina/química , Quinolinas/química , Sequência de Bases , Dicroísmo Circular , Reparo do DNA/efeitos dos fármacos , Eletroforese Capilar , Substâncias Intercalantes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
6.
Biomark Med ; 1(2): 293-312, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20477404

RESUMO

Inflammation is now a proven cause of human diseases such as cancer and cardiovascular disease. One potential link between inflammation and disease involves secretion of reactive chemical species by immune cells, with chronic damage to host epithelial cells leading to disease. This suggests pathophysiologically that DNA and RNA damage products are candidate biomarkers of inflammation, both for mechanistic understanding of the process and for risk assessment. Of the current approaches to quantifying DNA damage products, mass spectrometry-based methods provide the most rigorous quantification needed for biomarker development, while antibody-based approaches provide the most practical way to implement biomarkers in a clinical setting. Nonetheless, all approaches are biased by adventitious formation of DNA and RNA damage products during sample processing. Recent studies of tissue-derived DNA biomarkers in mouse models of inflammation reveal significant changes only in DNA adducts derived from lipid peroxidation. These and other observations raise the question of the most appropriate sampling compartment for DNA biomarker studies and highlight the emerging role of lipid damage in inflammation.

7.
J Am Chem Soc ; 128(31): 10085-95, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881637

RESUMO

The solution structure of the oligodeoxynucleotide 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' containing the heterocyclic amine 8-[(3-methyl-3H-imidazo[4,5-f]quinolin-2-yl)amino]-2'-deoxyguanosine adduct (IQ) at the third guanine in the NarI restriction sequence, a hot spot for -2 bp frameshifts, is reported. Molecular dynamics calculations restrained by distances derived from 24 (1)H NOEs between IQ and DNA, and torsion angles derived from (3)J couplings, yielded ensembles of structures in which the adducted guanine was displaced into the major groove with its glycosyl torsion angle in the syn conformation. One proton of its exocyclic amine was approximately 2.8 A from an oxygen of the 5' phosphodiester linkage, suggesting formation of a hydrogen bond. The carcinogen-guanine linkage was defined by torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] of 159 +/- 7 degrees and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)] of -23 +/- 8 degrees . The complementary cytosine was also displaced into the major groove. This allowed IQ to intercalate between the flanking C.G base pairs. The disruption of Watson-Crick hydrogen bonding was corroborated by chemical-shift perturbations for base aromatic protons in the complementary strand opposite to the modified guanine. Chemical-shift perturbations were also observed for (31)P resonances corresponding to phosphodiester linkages flanking the adduct. The results confirmed that IQ adopted a base-displaced intercalated conformation in this sequence context but did not corroborate the formation of a hydrogen bond between the IQ quinoline nitrogen and the complementary dC [Elmquist, C. E.; Stover, J. S.; Wang, Z.; Rizzo, C. J. J. Am. Chem. Soc. 2004, 126, 11189-11201].


Assuntos
Pareamento de Bases , Desoxirribonucleases de Sítio Específico do Tipo II/química , Análise de Alimentos , Mutagênicos/química , Quinolinas/química , Deleção de Sequência , Sequência de Bases , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Am Chem Soc ; 126(36): 11189-201, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15355100

RESUMO

The site-specific synthesis of oligonucleotides containing the C8-deoxyguanosine adduct of the highly mutagenic heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) has been achieved, and the oligonucleotides were characterized by UV melting temperature analysis, circular dichroism, and UV absorption spectroscopy. Examination of these data indicated that the IQ-adduct is accommodated in dramatically different environments. This sequence-dependent conformational preference is likely to play a key role in the mutagenicity and repair of IQ-modified oligonucleotides.


Assuntos
Desoxiguanosina/análogos & derivados , Mutagênicos/química , Oligonucleotídeos/síntese química , Quinolinas/química , Aminas/química , Dicroísmo Circular , Desoxiguanosina/síntese química , Mutação da Fase de Leitura , Oligonucleotídeos/química , Oligonucleotídeos/genética , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA