RESUMO
The current crisis of the COVID-19 pandemic around the world has been devastating as many lives have been lost to the novel SARS CoV-2 virus. Thus, there is an urgent need for the right therapeutic drug to curb the disease. However, there is time constraint in drug development, hence the need for drug repurposing approach, a relatively fast and less expensive alternative. In this study, 1,100 Food and Drug Administration (FDA) approved drugs were obtained from DrugBank and trimmed to 791 ligands based on illicitness, withdrawal from the market, being chemical agents rather than drugs, being investigational drugs and having molecular weight greater than 500 (Kg/mol). The ligands were docked against six drug targets of the novel SARS CoV-2 - 3-chymotrypsin-like protease (3CLpro), Angiotensin-converting enzyme (ACE2), ADP ribose phosphatase of NSP3 (NSP3), NSP9 RNA binding protein (NSP9), RNA dependent RNA polymerase (RdRp) and Replicase Polyprotein 1a (RP1a). UCSF Chimera, PyRx and Discovery Studio, were used to prepare the proteins, dock the ligands and visualize the complexes, respectively. Remdesivir, Lopinavir and Hydroxychloroquine were used as reference drugs. Pharmacokinetic properties of the ligands were obtained using AdmetSAR. The binding energies of the standard drugs ranged from -5.4 to -8.7 kcal/mol while over 400 of the ligands screened showed binding energy lower than -5.4 kcal/mol. Out of the 791 number of compounds docked, 10, 91, 132, 92, 54 and 96 compounds showed lower binding energies than all the controls against 3CLPro, ACE2, NSP3, NSP9, RP1a and RdRp, respectively. Ligands that bound all target proteins, and showed the lowest binding energies with good ADMET properties and particularly showed the lowest binding against ACE2 are ethynodiol diacetate (-15.6 kcal/mol), methylnaltrexone (-15.5 kcal/mol), ketazolam (-14.5 kcal/mol) and naloxone (-13.6 kcal/mol). Further investigations are recommended for ethynodiol diacetate, methylnaltrexone, ketazolam and naloxone through preclinical and clinical studies to ascertain their effectiveness.
RESUMO
Nephropathy is a serious complication comorbid with a number of life-threatening diseases such as diabetes. Flavonoids are well known cytoprotective phytochemicals. Here, nephropathy associated with streptozotocin (STZ) treatment in experimental animals was challenged by flavonoids (CoF) isolated from Chromolaena odorata. Experimental animals were divided into control (n = 5), STZ (40 mg/kg b.w. i.p. n = 5) and STZ-CoF (CoF = 30 mg/kg b.w. oral, 60 days, n = 7) groups. Blood urea nitrogen (BUN) and serum creatinine (SC) levels were quantified using ELISA. Kidney function, inflammatory marker, and antioxidant gene expression levels were also evaluated using reverse-transcription and polymerase chain reaction protocols. Histological assessment was also performed using Haematoxylin and Eosin (H&E) staining protocols. CoF improved kidney function by restoring BUN/SC levels to pre-STZ treatment states. KIM-1, TNF-α, and MCP-1 but not TNF-R and IL-10 genes were significantly downregulated in STZ-CoF treated group in comparison with STZ-treated group (p < 0.05). Anti-oxidant genes (GPx-1, CAT) significantly (p < 0.05 vs. control) upregulated in STZ-treatment did not respond to CoF treatment. STZ treatment associated Bowman's space enlargement, thickened basement membrane, and glomerulosclerosis were completely reversed in STZ-CoF group. Finally, CoF has demonstrable anti-nephropathic via downregulation of proinflammatory genes and may represent new management option in clinical nephropathy.