RESUMO
Through the exchange of lipids, proteins, and nucleic acids, extracellular vesicles (EV) allow for cell-cell communication across distant cells and tissues to regulate a wide range of physiological and pathological processes. Although some molecular mediators have been discovered, the mechanisms underlying the selective sorting of miRNAs into EV remain elusive. Previous studies demonstrated that connexin43 (Cx43) forms functional channels at the EV surface, mediating the communication with recipient cells. Here, we show that Cx43 participates in the selective sorting of miRNAs into EV through a process that can also involve RNA-binding proteins. We provide evidence that Cx43 can directly bind to specific miRNAs, namely those containing stable secondary structure elements, including miR-133b. Furthermore, Cx43 facilitates the delivery of EV-miRNAs into recipient cells. Phenotypically, we show that Cx43-mediated EV-miRNAs sorting modulates autophagy. Overall, our study ascribes another biological role to Cx43, that is, the selective incorporation of miRNAs into EV, which potentially modulates multiple biological processes in target cells and may have implications for human health and disease.
Assuntos
Vesículas Extracelulares , MicroRNAs , Comunicação Celular , Movimento Celular , Conexina 43/genética , Conexina 43/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-ß-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.
Assuntos
Fibrose , MicroRNAs , Infarto do Miocárdio , Líquido Pericárdico , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Masculino , Líquido Pericárdico/metabolismo , Feminino , Miocárdio/metabolismo , Miocárdio/patologia , Pessoa de Meia-Idade , Fibroblastos/metabolismo , Idoso , Fator de Crescimento Transformador beta/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genéticaRESUMO
Hypoxia-inducible factors (HIFs) are the main regulatory factors implicated in the adaptation of cancer cells to hypoxic stress, which has provoked much interest as an attractive target for the design of promising chemotherapeutic agents. Since indirect HIF inhibitors (HIFIs) lead to the occurrence of various side effects, the need of the hour is to develop direct HIFIs, physically interacting with important functional domains within the HIF protein structure. Accordingly, in the present study, it was attempted to develop an exhaustive structure-based virtual screening (VS) process coupled with molecular docking, molecular dynamic (MD) simulation, and MM-GBSA calculations for the identification of novel direct inhibitors against the HIF-2α subunit. For this purpose, a focused library of over 200,000 compounds from the NCI database was used for VS against the PAS-B domain of the target protein, HIF-2α. This domain was suggested to be a possible ligand-binding site, which is characterized by a large internal hydrophobic cavity, unique to the HIF-2α subunit. The top-ranked compounds, NSC106416, NSC217021, NSC217026, NSC215639, and NSC277811 with the best docking scores were taken up for the subsequent in silico ADME properties and PAINS filtration. The selected drug-like hits were employed for carrying out MD simulation which was followed by MM-GBSA calculations to retrieve the candidates showing the highest in silico binding affinity towards the PAS-B domain of HIF-2α. The analysis of results indicated that all molecules, except the NSC277811, fulfilled necessary drug-likeness properties. Four selected drug-like candidates, NSC106416, NSC217021, NSC217026, and NSC215639 were found to expose the stability profiles within the cavity located inside the PAS-B domain of HIF-2α over simulation time. Finally, the results of the MM-GBSA rescoring method were indicative of the highest binding affinity of NSC217026 for the binding site of the HIF-2α PAS-B domain among selected final hits. Consequently, the hit NSC217026 could serve as a promising scaffold for further optimization toward the design of direct HIF-2α inhibitors for cancer therapy.
RESUMO
The central role of RNA molecules in cell biology has been an expanding subject of study since the proposal of the "RNA world" hypothesis 60 years ago [...].
Assuntos
Redes Reguladoras de Genes , RNA , RNA/genéticaRESUMO
Dengue virus (DENV) is a single-stranded (+)-sense RNA virus that infects humans and mosquitoes, posing a significant health risk in tropical and subtropical regions. Mature virions are composed of an icosahedral shell of envelope (E) and membrane (M) proteins circumscribing a lipid bilayer, which in turn contains a complex of the approximately 11 kb genomic RNA with capsid (C) proteins. Whereas the structure of the envelope is clearly defined, the structure of the packaged genome in complex with C proteins remains elusive. Here, we investigated the interactions of C proteins with viral RNA, in solution and inside mature virions, via footprinting and cross-linking experiments. We demonstrated that C protein interaction with DENV genomes saturates at an RNA:C protein ratio below 1:250. Moreover, we also showed that the length of the RNA genome interaction sites varies, in a multimodal distribution, consistent with the C protein binding to each RNA site mostly in singlets or pairs (and, in some instances, higher numbers). We showed that interaction sites are preferentially sites with low base pairing, as previously measured by 2'-acetylation analyzed by primer extension (SHAPE) reactivity indicating structuredness. We found a clear association pattern emerged: RNA-C protein binding sites are strongly associated with long-range RNA-RNA interaction sites, particularly inside virions. This, in turn, explains the need for C protein in viral genome packaging: the protein has a chief role in coordinating these key interactions, promoting proper packaging of viral RNA. Such sites are, thus, highly consequential for viral assembly, and, as such, may be targeted in future drug development strategies against these and related viruses.
Assuntos
Proteínas do Capsídeo , Vírus da Dengue , Animais , Humanos , Proteínas do Capsídeo/química , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Genoma Viral , Capsídeo/química , RNA Viral/metabolismoRESUMO
This study investigated the effects of neonatal exposure to methoxychlor (MXC), a synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic activities, on luteal function in pigs. Piglets were injected subcutaneously with MXC (20 µg/kg body weight) or corn oil (control) between postnatal Days 1 and 10 (N = 5/group). Corpora lutea from sexually mature gilts were examined for luteal steroid and prostaglandin concentrations and processed for total RNA isolation and subsequent RNA sequencing. Intra-luteal concentrations of androstenedione and prostaglandin E2 were greater, while that of estrone was lower when compared to control. Fifty-three differentially expressed (DE) microRNAS (miRNAs) (p-adjusted <.05 and log2(fold change) ≥.5) and 359 DE genes (p-adjusted <.05 and log2(fold change) ≥1) were identified in luteal tissue in response to neonatal MXC treatment. MXC was found to affect the expression of genes related to lipogenesis, steroidogenesis, membrane transport, immune response, cell signaling and adhesion. These results suggest an earlier onset of structural luteolysis in pigs caused by MXC actions in neonates. Since negative correlation analysis showed the potential interactions of miRNAs with specific messenger RNAs, we propose that these miRNAs are potential mediators of the long-term MXC effect on the CL function in pigs.
Assuntos
Corpo Lúteo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inseticidas/farmacologia , Metoxicloro/farmacologia , Androstenodiona/metabolismo , Animais , Animais Recém-Nascidos , Corpo Lúteo/metabolismo , Estrona/metabolismo , Feminino , Perfilação da Expressão Gênica , Prostaglandinas/metabolismo , SuínosRESUMO
α-synuclein (aSyn) is a major player in Parkinson's disease and a group of other disorders collectively known as synucleinopathies, but the precise molecular mechanisms involved are still unclear. aSyn, as virtually all proteins, undergoes a series of posttranslational modifications during its lifetime, which can affect its biology and pathobiology. We recently showed that glycation of aSyn by methylglyoxal (MGO) potentiates its oligomerization and toxicity, induces dopaminergic neuronal cell loss in mice, and affects motor performance in flies. Small heat-shock proteins (sHsps) are molecular chaperones that facilitate the folding of proteins or target misfolded proteins for clearance. Importantly, sHsps were shown to prevent aSyn aggregation and cytotoxicity. Upon treating cells with increasing amounts of methylglyoxal, we found that the levels of Hsp27 decreased in a dose-dependent manner. Therefore, we hypothesized that restoring the levels of Hsp27 in glycating environments could alleviate the pathogenicity of aSyn. Consistently, we found that Hsp27 reduced MGO-induced aSyn aggregation in cells, leading to the formation of nontoxic aSyn species. Remarkably, increasing the levels of Hsp27 suppressed the deleterious effects induced by MGO. Our findings suggest that in glycating environments, the levels of Hsp27 are important for modulating the glycation-associated cellular pathologies in synucleinopathies.
Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Agregados Proteicos/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , alfa-Sinucleína/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Glicosilação , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Células Tumorais Cultivadas , alfa-Sinucleína/efeitos dos fármacosRESUMO
Breast cancer is a heterogeneous disease, which is the most common malignancy in women. The incidence and mortality rates of breast cancer indicate that it is the leading cause of cancer-related with deaths. circRNAs operate as part of competing endogenous RNAs (ceRNAs) mechanisms, which play critical roles in the different biological processes of breast cancer such as proliferation, migration, and apoptosis. The goal of the present study is to identify the potential predictive biomarker for breast cancer diagnosis in the circRNA network by in vitro and in silico analyzes. 40 miRNAs were obtained from the miRWalk database and their combinatorial target genes (potential ceRNAs) were identified with ComiR. We stated that the cancer-specific circRNA genes in MCF-7 cells using the cancer-specific circRNA (CSDC) database, and obtained the ones showing potential ceRNA activity in our previous analysis among them. Identified genes with remarkable expression differences between BCa and normal breast tissue were determined by the GEPIA database. Moreover, the Spearman correlation test in the GEPIA database was used for the statistical analysis of the relationship between DCAF7 and SOGA1, SOGA1 and AVL 9, DCAF7 and AVL 9 gene pairs. And also, DCAF7, SOGA1, and AVL9 gene expression levels were detected in MCF-7 and MCF-10A cells by RT-qPCR method. DCAF7, SOGA1, and AVL9 gene were significantly more expressed to BCa tissue and MCF-7 cells than normal breast tissue and MCF-10 A cells. And also, DCAF7 and SOGA1, SOGA1 and AVL9, DCAF7 and AVL9 genes pairs were found to be significantly correlated with BCa. These genes may be considered as potential predictive biomarkers to discriminate BCa patients from healthy persons. Our preliminary results can supply a new perspective for in vitro and vivo studies in the future.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Simulação por Computador , MicroRNAs/genética , RNA Circular/genética , Biomarcadores Tumorais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Circular/metabolismo , Estatísticas não ParamétricasRESUMO
Esters are organic compounds widely represented in cellular structures and metabolism, originated by the condensation of organic acids and alcohols. Esterification reactions are also used by chemical industries for the production of synthetic plastic polymers. Polyester plastics are an increasing source of environmental pollution due to their intrinsic stability and limited recycling efforts. Bioremediation of polyesters based on the use of specific microbial enzymes is an interesting alternative to the current methods for the valorization of used plastics. Microbial esterases are promising catalysts for the biodegradation of polyesters that can be engineered to improve their biochemical properties. In this work, we analyzed the structure-activity relationships in microbial esterases, with special focus on the recently described plastic-degrading enzymes isolated from marine microorganisms and their structural homologs. Our analysis, based on structure-alignment, molecular docking, coevolution of amino acids and surface electrostatics determined the specific characteristics of some polyester hydrolases that could be related with their efficiency in the degradation of aromatic polyesters, such as phthalates.
Assuntos
Proteínas de Bactérias , Burkholderiales/enzimologia , Esterases , Poliésteres , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Esterases/química , Esterases/metabolismo , Poliésteres/química , Poliésteres/metabolismoRESUMO
Background and Objectives: Tumor necrosis factor alpha (TNF-α) is proatherogenic and associated with the risk of acute ischemic events, although the mechanisms that regulate TNF-α expression in stable coronary artery disease (SCAD) are not fully understood. We investigated whether metabolic, inflammatory, and epigenetic (microRNA (miRNA)) markers are associated with TNF-α expression in SCAD. Materials and Methods: Patients with SCAD were prospectively recruited and their metabolic and inflammatory profiles were assessed. TNF-α levels were assessed using an enzyme-linked immunosorbent assay. The relative expression of six circulating miRNAs associated with the regulation of inflammation and/or atherosclerosis was determined. Results: Of the 24 included patients with the mean age of 65 (9) years, 88% were male, and 54% were diabetic. The TNF-α levels were (median (interquartile range)) 1.0 (0.7-1.1) pg/mL. The percentage of glycosylated hemoglobin (r = 0.418, p = 0.042), serum triglyceride levels (r = 0.429, p = 0.037), and C-reactive protein levels (r = 0.407, p = 0.048) were positively correlated with TNF-α levels. Of the candidate miRNAs, miR-146a expression levels were negatively correlated with TNF-α levels (as indicated by r = 0.500, p = 0.035 for correlation between delta cycle threshold (ΔCt) miR-146a and TNF-α levels). In multivariate analysis, serum triglyceride levels and miR-146a expression levels were independently associated with TNF-α levels. miR-146 expression levels were not associated with metabolic or other inflammatory parameters and were negatively correlated with the number of coronary vessels with obstructive disease (as indicated by r = 0.556, p = 0.017 for correlation between ΔCt miR-146a and number of diseased vessels). Conclusions: miR-146a expression levels were negatively correlated with TNF-α levels in patients with SCAD, irrespective of other metabolic or inflammatory markers, and with the severity of coronary artery disease. The results add to the knowledge on the role of miR-146a in TNF-α-based inflammation in SCAD and support future research on the potential therapeutic use of miR-146a in such a clinical scenario.
Assuntos
Doença da Artéria Coronariana , MicroRNAs , Idoso , Biomarcadores , Doença da Artéria Coronariana/genética , Feminino , Humanos , Inflamação , Masculino , MicroRNAs/genética , Fator de Necrose Tumoral alfaRESUMO
The transcriptional complexity generated by the human genomic output is within the core of cell and organ physiology, but also could be in the origin of pathologies. In cardiovascular diseases, the role of specific families of RNA transcripts belonging to the group of the non-coding RNAs started to be unveiled in the last two decades. The knowledge of the functional rules and roles of non-coding RNAs in the context of cardiovascular diseases is an important factor to derive new diagnostic methods, but also to design targeted therapeutic strategies. The characterization and analysis of ncRNA function requires a deep knowledge of the regulatory mechanism of these RNA species that often relies on intricated interaction networks. The use of specific bioinformatic tools to interrogate biological data and to derive functional implications is particularly relevant and needs to be extended to the general practice of translational researchers. This chapter briefly summarizes the bioinformatic tools and strategies that could be used for the characterization and functional analysis of non-coding RNAs, with special emphasis in their applications to the cardiovascular field.
Assuntos
Doenças Cardiovasculares , Biologia Computacional/métodos , RNA não Traduzido , Doenças Cardiovasculares/genética , Humanos , Projetos de PesquisaRESUMO
Non-coding RNAs (ncRNAs) are important regulatory players in human cells that have been shown to modulate different cellular processes and biological functions through controlling gene expression, being also involved in pathological conditions such as cardiovascular diseases. Among them, long non-coding RNAs (lncRNAs) and circular (circRNAs) could act as competing endogenous RNAs (ceRNAs) sequestering other ncRNAs. This entangled network of interactions has been reported to trigger the decay of the targeted ncRNAs having important roles in gene regulation. Growing evidences have been demonstrated that the regulatory mechanism underlying the crosstalk between different ncRNA species, namely lncRNAs, circRNAs and miRNAs has also an important role in the pathophysiological processes of cardiovascular diseases. In this chapter, the main regulatory relationship among lncRNAs, circRNAs and miRNAs were summarized and their role in the control and development of cardiovascular diseases was highlighted.
Assuntos
Doenças Cardiovasculares , RNA não Traduzido , Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , HumanosRESUMO
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Assuntos
Comunicação Celular/genética , Comunicação Celular/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais , Animais , Antozoários/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Disbiose , Mamíferos , Metagenoma , MicroRNAs , Microbiota/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas , Simbiose/genética , Simbiose/fisiologia , TranscriptomaRESUMO
Non-coding regulatory RNAs are generated as a core output of the eukaryotic genomes, being essential players in cell biology. At the organism level, they are key functional actors in those tissues and organs with limited proliferation capabilities such as the heart. The role of regulatory networks mediated by non-coding RNAs in the pathophysiology of cardiovascular conditions is starting to be unveiled. However, a deeper knowledge of the functional interactions among the diverse non-coding RNA families and their phenotypic consequences is required. This review presents the current knowledge about the functional crosstalk between circRNAs and other biomolecules in the framework of the cardiovascular diseases.
Assuntos
Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Redes Reguladoras de Genes , RNA Circular/metabolismo , Animais , Biomarcadores , Humanos , MicroRNAs/genética , RNA Circular/classificação , RNA Circular/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNARESUMO
Dengue, West Nile and Zika, closely related viruses of the Flaviviridae family, are an increasing global threat, due to the expansion of their mosquito vectors. They present a very similar viral particle with an outer lipid bilayer containing two viral proteins and, within it, the nucleocapsid core. This core is composed by the viral RNA complexed with multiple copies of the capsid protein, a crucial structural protein that mediates not only viral assembly, but also encapsidation, by interacting with host lipid systems. The capsid is a homodimeric protein that contains a disordered N-terminal region, an intermediate flexible fold section and a very stable conserved fold region. Since a better understanding of its structure can give light into its biological activity, here, first, we compared and analyzed relevant mosquito-borne Flavivirus capsid protein sequences and their predicted structures. Then, we studied the alternative conformations enabled by the N-terminal region. Finally, using dengue virus capsid protein as main model, we correlated the protein size, thermal stability and function with its structure/dynamics features. The findings suggest that the capsid protein interaction with host lipid systems leads to minor allosteric changes that may modulate the specific binding of the protein to the viral RNA. Such mechanism can be targeted in future drug development strategies, namely by using improved versions of pep14-23, a dengue virus capsid protein peptide inhibitor, previously developed by us. Such knowledge can yield promising advances against Zika, dengue and closely related Flavivirus.
Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Vírus da Dengue , Flavivirus , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Sequência Conservada , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Evolução Molecular , Flavivirus/genética , Flavivirus/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Filogenia , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-AtividadeRESUMO
α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions.
Assuntos
Doenças Neurodegenerativas/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Envelhecimento/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Inibidores Enzimáticos/farmacologia , Feminino , Glicosilação/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/farmacologia , Ratos , Leveduras/efeitos dos fármacos , Leveduras/fisiologia , alfa-Sinucleína/efeitos dos fármacos , alfa-Sinucleína/fisiologiaRESUMO
Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.
Assuntos
Doenças Cardiovasculares/sangue , MicroRNAs/sangue , RNA Longo não Codificante/sangue , RNA/sangue , Biomarcadores/sangue , Doenças Cardiovasculares/genética , Humanos , MicroRNAs/genética , RNA/genética , RNA Circular , RNA Longo não Codificante/genéticaRESUMO
Current estimates indicate that approximately one-third of all disease-causing mutations are expected to disrupt splicing. Abnormal splicing often leads to disruption of the reading frame with introduction of a premature termination codon (PTC) that targets the mRNA for degradation in the cytoplasm by nonsense mediated decay (NMD). In addition to NMD there are RNA surveillance mechanisms that act in the nucleus while transcripts are still associated with the chromatin template. However, the significance of nuclear RNA quality control in the context of human genetic diseases is unknown. Here we used patient-derived lymphoblastoid cell lines as disease models to address how biogenesis of mRNAs is affected by splice site mutations. We observed that most of the mutations analyzed introduce PTCs and trigger mRNA degradation in the cytoplasm. However, for some mutant transcripts, RNA levels associated with chromatin were found down-regulated. Quantification of nascent transcripts further revealed that a subset of genes containing splicing mutations (SM) have reduced transcriptional activity. Following treatment with the translation inhibitor cycloheximide the cytoplasmic levels of mutant RNAs increased, while the levels of chromatin-associated transcripts remained unaltered. These results suggest that transcription-coupled surveillance mechanisms operate independently from NMD to reduce cellular levels of abnormal RNAs caused by SM.
Assuntos
Doenças Genéticas Inatas/genética , Mutação , Sítios de Splice de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Códon sem Sentido , Humanos , Splicing de RNA , Transcrição GênicaRESUMO
Aging is a universal phenomenon in metazoans, characterized by a general decline of the organism physiology associated with an increased risk of mortality and morbidity. Aging of an organism correlates with a decline in function of its cells, as shown for muscle, immune, and neuronal cells. As the DNA content of most cells within an organism remains largely identical throughout the life span, age-associated transcriptional changes must be achieved by epigenetic mechanisms. However, how aging may impact on the epigenetic state of cells is only beginning to be understood. In light of a growing number of studies demonstrating that noncoding RNAs can provide molecular signals that regulate expression of protein-coding genes and define epigenetic states of cells, we hypothesize that noncoding RNAs could play a direct role in inducing age-associated profiles of gene expression. In this context, the role of long noncoding RNAs (lncRNAs) as regulators of gene expression might be important for the overall transcriptional landscape observed in aged human cells. The possible functions of lncRNAs and other noncoding RNAs, and their roles in the regulation of aging-related cellular pathways will be analyzed.