Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 188(2): 623-631, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30032439

RESUMO

Differences in the rates of responses to climate change have the potential to disrupt well-established ecological interactions among species. In semi-aquatic communities, competitive asymmetry based on body size currently maintains competitive exclusion and coexistence via interference competition. Elevated temperatures are predicted to have the strongest negative effects on large species and aquatic species. Our objectives were to evaluate the interaction between the effects of elevated temperatures and competitor identity on growth and habitat selection behavior of semi-aquatic salamanders in stream mesocosms. We observed interference competition between small and large species. Elevated temperatures had a negative effect on the larger species and a neutral effect on the smaller species. At elevated temperatures, the strength of interference competition declined, and the smaller species co-occupied the same aquatic cover objects as the larger species more frequently. Disruptions in competitive interactions in this community may affect habitat use patterns and decrease selection for character displacement among species. Determining how biotic interactions change along abiotic gradients is necessary to predict the future long-term stability of current communities.


Assuntos
Rios , Urodelos , Animais , Região dos Apalaches , Ecossistema , Temperatura
2.
J Therm Biol ; 49-50: 119-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774035

RESUMO

Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.


Assuntos
Comportamento Animal , Clima Desértico , Tartarugas/fisiologia , Animais , Feminino , Masculino , Atividade Motora , Estações do Ano , Temperatura
3.
Environ Manage ; 56(2): 332-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25894273

RESUMO

With the recent increase in utility-scale wind energy development, researchers have become increasingly concerned how this activity will affect wildlife and their habitat. To understand the potential impacts of wind energy facilities (WEF) post-construction (i.e., operation and maintenance) on wildlife, we compared differences in activity centers and survivorship of Agassiz's desert tortoises (Gopherus agassizii) inside or near a WEF to neighboring tortoises living near a wilderness area (NWA) and farther from the WEF. We found that the size of tortoise activity centers varied, but not significantly so, between the WEF (6.25 ± 2.13 ha) and adjacent NWA (4.13 ± 1.23 ha). However, apparent survival did differ significantly between the habitat types: over the 18-year study period apparent annual survival estimates were 0.96 ± 0.01 for WEF tortoises and 0.92 ± 0.02 for tortoises in the NWA. High annual survival suggests that operation and maintenance of the WEF has not caused considerable declines in the adult population over the past two decades. Low traffic volume, enhanced resource availability, and decreased predator populations may influence annual survivorship at this WEF. Further research on these proximate mechanisms and population recruitment would be useful for mitigating and managing post-development impacts of utility-scale wind energy on long-lived terrestrial vertebrates.


Assuntos
Animais Selvagens/fisiologia , Ecossistema , Arquitetura de Instituições de Saúde , Tartarugas/fisiologia , Vento , Animais , Animais Selvagens/crescimento & desenvolvimento , Clima Desértico , Monitoramento Ambiental , Dinâmica Populacional , Energia Renovável , Sudoeste dos Estados Unidos , Taxa de Sobrevida
4.
Ticks Tick Borne Dis ; 12(1): 101560, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007669

RESUMO

The gopher tortoise tick, Amblyomma tuberculatum, is known to parasitize keystone ectotherm reptile species. The biological success of ticks requires precise mechanisms to evade host hemostatic and immune responses. Acquisition of a full blood meal requires attachment, establishment of the blood pool, and engorgement of the tick. Tick saliva contains molecules which counter the host responses to allow uninterrupted feeding on the host. RNASeq of the salivary glands of Amblyomma tuberculatum ticks were sequenced resulting in 138,030 pyrosequencing reads which were assembled into 29,991 contigs. A total of 1875 coding sequences were deduced from the transcriptome assembly, including 602 putative secretory and 982 putative housekeeping proteins. The annotated data sets are available as a hyperlinked spreadsheet. The sialotranscriptome assembled for this tick species made available a valuable resource for mining novel pharmacological activities and comparative analysis.


Assuntos
Amblyomma/genética , Proteínas de Artrópodes/análise , Transcriptoma , Animais , Feminino , RNA-Seq , Glândulas Salivares/química , Tartarugas/parasitologia
5.
Biol Rev Camb Philos Soc ; 93(3): 1634-1648, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29575680

RESUMO

The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on brackish water habitats are likely to be vulnerable to SLR because of their exclusive coastal distributions and adaptations to a narrow range of salinities. Most species, however, have not been documented in brackish water habitats but may also be highly vulnerable to projected SLR. Our analysis suggests that approximately 90% of coastal freshwater turtle species assessed in our study will be affected by a 1-m increase in global mean SLR by 2100. Most at risk are freshwater turtles found in New Guinea, Southeast Asia, Australia, and North and South America that may lose more than 10% of their present geographic range. In addition, turtle species in the families Chelidae, Emydidae, and Trionychidae may experience the greatest exposure to projected SLR in their present geographic ranges. Better understanding of survival, growth, reproductive and population-level responses to SLR will improve region-specific population viability predictions of freshwater turtles that are increasingly exposed to SLR. Integrating phylogenetic, physiological, and spatial frameworks to assess the effects of projected SLR may improve identification of vulnerable species, guilds, and geographic regions in need of conservation prioritization. We conclude that the use of brackish and marine environments by freshwater turtles provides clues about the evolutionary processes that have prolonged their existence, shaped their unique coastal distributions, and may prove useful in predicting their response to a changing world.


Assuntos
Mudança Climática , Salinidade , Tolerância ao Sal/fisiologia , Tartarugas/fisiologia , Água/química , Animais , Água Doce
6.
Ecol Evol ; 7(9): 3177-3189, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28480017

RESUMO

We compared egg size phenotypes and tested several predictions from the optimal egg size (OES) and bet-hedging theories in two North American desert-dwelling sister tortoise taxa, Gopherus agassizii and G. morafkai, that inhabit different climate spaces: relatively unpredictable and more predictable climate spaces, respectively. Observed patterns in both species differed from the predictions of OES in several ways. Mean egg size increased with maternal body size in both species. Mean egg size was inversely related to clutch order in G. agassizii, a strategy more consistent with the within-generation hypothesis arising out of bet-hedging theory or a constraint in egg investment due to resource availability, and contrary to theories of density dependence, which posit that increasing hatchling competition from later season clutches should drive selection for larger eggs. We provide empirical evidence that one species, G. agassizii, employs a bet-hedging strategy that is a combination of two different bet-hedging hypotheses. Additionally, we found some evidence for G. morafkai employing a conservative bet-hedging strategy. (e.g., lack of intra- and interclutch variation in egg size relative to body size). Our novel adaptive hypothesis suggests the possibility that natural selection favors smaller offspring in late-season clutches because they experience a more benign environment or less energetically challenging environmental conditions (i.e., winter) than early clutch progeny, that emerge under harsher and more energetically challenging environmental conditions (i.e., summer). We also discuss alternative hypotheses of sexually antagonistic selection, which arise from the trade-offs of son versus daughter production that might have different optima depending on clutch order and variation in temperature-dependent sex determination (TSD) among clutches. Resolution of these hypotheses will require long-term data on fitness of sons versus daughters as a function of incubation environment, data as yet unavailable for any species with TSD.

7.
Ecol Evol ; 5(11): 2296-305, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26078863

RESUMO

Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves.

8.
J Parasitol ; 97(2): 202-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21506776

RESUMO

The distribution of the gopher tortoise tick ( Amblyomma tuberculatum ) has been considered intrinsically linked to the distribution of its primary host, gopher tortoises ( Gopherus polyphemus ). However, the presence of G. polyphemus does not always equate to the presence of A. tuberculatum . There is a paucity of data on the ecology, habitat preferences, and distribution of A. tuberculatum . The goals of this study were to assess the distribution of A. tuberculatum in southern Mississippi and to determine which, if any, habitat parameters explain the distribution pattern of A. tuberculatum . During 2006-2007, we examined 13 G. polyphemus populations in southern Mississippi for the presence of A. tuberculatum , and we measured a suite of habitat parameters at each site. Only 23% of the G. polyphemus populations supported A. tuberculatum , suggesting a more restricted distribution than its host. The results of our multivariate analyses identified several habitat variables, e.g., depth of sand and percentage of sand in the topsoil and burrow apron, as being important in discriminating between sites with, and without, A. tuberculatum. Amblyomma tuberculatum was only found at sites with a mean sand depth of > 100 cm and a mean percentage of topsoil and burrow apron sand composition > 94.0 and 92.4, respectively. Thus, environmental factors, and not just its host's range, seem to influence the distribution of A. tuberculatum.


Assuntos
Ecossistema , Ixodidae/fisiologia , Infestações por Carrapato/veterinária , Tartarugas/parasitologia , Animais , Sistemas de Informação Geográfica , Interações Hospedeiro-Parasita , Mississippi/epidemiologia , Análise de Componente Principal , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA