Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(1): 150-165, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542545

RESUMO

The increasing demand for tissue replacement has encouraged scientists worldwide to focus on developing new biofabrication technologies. Multimaterials/cells printed with stringent resolutions are necessary to address the high complexity of tissues. Advanced inkjet 3D printing can use multimaterials and attain high resolution and complexity of printed structures. However, a decisive yet limiting aspect of translational 3D bioprinting is selecting the befitting material to be used as bioink; there is a complete lack of cytoactive bioinks with adequate rheological, mechanical, and reactive properties. This work strives to achieve the right balance between resolution and cell support through methacrylamide functionalization of a psychrophilic gelatin and new fluorosurfactants used to engineer a photo-cross-linkable and immunoevasive bioink. The syntonized parameters following optimal formulation conditions allow proficient printability in a PolyJet 3D printer comparable in resolution to a commercial synthetic ink (∼150 µm). The bioink formulation achieved the desired viability (∼80%) and proliferation of co-printed cells while demonstrating in vivo immune tolerance of printed structures. The practical usage of existing high-resolution 3D printing systems using a novel bioink is shown here, allowing 3D bioprinted structures with potentially unprecedented complexity.


Assuntos
Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Gelatina/química , Reologia , Alicerces Teciduais/química , Engenharia Tecidual/métodos
2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108653

RESUMO

For biomedical applications, gelatin is usually modified with methacryloyl groups to obtain gelatin methacryloyl (GelMA), which can be crosslinked by a radical reaction induced by low wavelength light to form mechanically stable hydrogels. The potential of GelMA hydrogels for tissue engineering has been well established, however, one of the main disadvantages of mammalian-origin gelatins is that their sol-gel transitions are close to room temperature, resulting in significant variations in viscosity that can be a problem for biofabrication applications. For these applications, cold-water fish-derived gelatins, such as salmon gelatin, are a good alternative due to their lower viscosity, viscoelastic and mechanical properties, as well as lower sol-gel transition temperatures, when compared with mammalian gelatins. However, information regarding GelMA (with special focus on salmon GelMA as a model for cold-water species) molecular conformation and the effect of pH prior to crosslinking, which is key for fabrication purposes since it will determine final hydrogel's structure, remains scarce. The aim of this work is to characterize salmon gelatin (SGel) and salmon methacryloyl gelatin (SGelMA) molecular configuration at two different acidic pHs (3.6 and 4.8) and to compare them to commercial porcine gelatin (PGel) and methacryloyl porcine gelatin (PGelMA), usually used for biomedical applications. Specifically, we evaluated gelatin and GelMA samples' molecular weight, isoelectric point (IEP), their molecular configuration by circular dichroism (CD), and determined their rheological and thermophysical properties. Results showed that functionalization affected gelatin molecular weight and IEP. Additionally, functionalization and pH affected gelatin molecular structure and rheological and thermal properties. Interestingly, the SGel and SGelMA molecular structure was more sensitive to pH changes, showing differences in gelation temperatures and triple helix formation than PGelMA. This work suggests that SGelMA presents high tunability as a biomaterial for biofabrication, highlighting the importance of a proper GelMA molecular configuration characterization prior to hydrogel fabrication.


Assuntos
Gelatina , Engenharia Tecidual , Animais , Gelatina/química , Temperatura de Transição , Viscosidade , Suspensões , Engenharia Tecidual/métodos , Metacrilatos/química , Salmão , Hidrogéis/química , Conformação Molecular , Água , Mamíferos
3.
J Ind Microbiol Biotechnol ; 46(8): 1139-1153, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31089984

RESUMO

Extreme environments are a unique source of microorganisms encoding metabolic capacities that remain largely unexplored. In this work, we isolated two Antarctic bacterial strains able to produce poly(3-hydroxyalkanoates) (PHAs), which were classified after 16S rRNA analysis as Pseudomonas sp. MPC5 and MPC6. The MPC6 strain presented nearly the same specific growth rate whether subjected to a temperature of 4 °C 0.18 (1/h) or 30 °C 0.2 (1/h) on glycerol. Both Pseudomonas strains produced high levels of PHAs and exopolysaccharides from glycerol at 4 °C and 30 °C in batch cultures, an attribute that has not been previously described for bacteria of this genus. The MPC5 strain produced the distinctive medium-chain-length-PHA whereas Pseudomonas sp. MPC6 synthesized a novel polyoxoester composed of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate). Batch bioreactor production of PHAs in MPC6 resulted in a titer of 2.6 (g/L) and 1.3 (g/L), accumulating 47.3% and 34.5% of the cell dry mass as PHA, at 30 and 4 °C, respectively. This study paves the way for using Antarctic Pseudomonas strains for biosynthesizing novel PHAs from low-cost substrates such as glycerol and the possibility to carry out the bioconversion process for biopolymer synthesis without the need for temperature control.


Assuntos
Biopolímeros/biossíntese , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas/metabolismo , Regiões Antárticas , Reatores Biológicos , Glicerol/metabolismo , Pseudomonas/genética , RNA Ribossômico 16S/genética
4.
Biomacromolecules ; 16(6): 1784-93, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25928444

RESUMO

This work reports on the preparation and characterization of natural composite materials prepared from bacterial cellulose (BC) incorporated into a gelatin matrix. Composite morphology was studied using scanning electron microscopy and 2D Raman imaging revealing an inhomogeneous dispersion of BC within the gelatin matrix. The composite materials showed controllable degrees of transparency to visible light and opacity to UV light depending on BC weight fraction. By adding a 10 wt % fraction of BC in gelatin, visible (λ = 550 nm) and UV (λ = 350 nm) transmittances were found to decrease by ∼35 and 40%, respectively. Additionally, stress transfer occurring between the gelatin and BC fibrils was quantified using Raman spectroscopy. This is the first report for a gelatin-matrix composite containing cellulose. As a function of strain, two distinct domains, both showing linear relationships, were observed for which an average initial shift rate with respect to strain of -0.63 ± 0.2 cm(-1)%(-1) was observed, followed by an average shift rate of -0.25 ± 0.03 cm(-1)%(-1). The average initial Raman band shift rate value corresponds to an average effective Young's modulus of 39 ± 13 GPa and 73 ± 25 GPa, respectively, for either a 2D and 3D network of BC fibrils embedded in the gelatin matrix. As a function of stress, a linear relationship was observed with a Raman band shift rate of -27 ± 3 cm(-1)GPa(-1). The potential use of these composite materials as a UV blocking food coating is discussed.


Assuntos
Celulose/química , Gelatina/química , Nanocompostos/química , Nanocompostos/efeitos da radiação , Estresse Mecânico , Raios Ultravioleta
5.
Bioprocess Biosyst Eng ; 38(4): 777-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25376366

RESUMO

Biomaterials based on crosslinked sponges of biopolymers have been extensively used as scaffolds to culture mammal cells. It is well known that single biopolymers show significant change over time due to a phenomenon called physical ageing. In this research, it was verified that scaffolds used for skin tissue engineering (based on gelatin, chitosan and hyaluronic acid) express an ageing-like phenomenon. Treatments based on ageing of scaffolds improve the behavior of skin-cells for tissue engineering purposes. Physical ageing of dry scaffolds was studied by differential scanning calorimetry and was modeled with ageing kinetic equations. In addition, the physical properties of wet scaffolds also changed with the ageing treatments. Scaffolds were aged up to 3 weeks, and then skin-cells (fibroblasts) were seeded on them. Results indicated that adhesion, migration, viability, proliferation and spreading of the skin-cells were affected by the scaffold ageing. The best performance was obtained with a 2-week aged scaffold (under cell culture conditions). The cell viability inside the scaffold was increased from 60% (scaffold without ageing treatment) to 80%. It is concluded that biopolymeric scaffolds can be modified by means of an ageing treatment, which changes the behavior of the cells seeded on them. The ageing treatment under cell culture conditions might become a bioprocess to improve the scaffolds used for tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Pele/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Biomassa , Biopolímeros/química , Varredura Diferencial de Calorimetria , Bovinos , Sobrevivência Celular , Quitosana/química , Gelatina/química , Ácido Hialurônico/química , Imuno-Histoquímica , Cinética , Modelos Biológicos , Modelos Teóricos , Ratos , Medicina Regenerativa
6.
Bioprocess Biosyst Eng ; 36(3): 317-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22802044

RESUMO

Gelatin-/chitosan-/hyaluronan-based biomaterials are used in tissue engineering as cell scaffolds. Three gamma radiation doses (1, 10 and 25 kGy) were applied to scaffolds for sterilization. Microstructural changes of the irradiated polymers were evaluated by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A dose of 25 kGy produced a rough microstructure with a reduction of the porosity (from 99 to 96 %) and pore size (from 160 to 123 µm). Radiation also modified the glass transition temperature between 31.2 and 42.1 °C (1 and 25 kGy respectively). Human skin cells cultivated on scaffolds irradiated with 10 and 25 kGy proliferated at 48 h and secreted transforming growth factor ß3 (TGF-ß3). Doses of 0 kGy (non-irradiated) or 1 kGy did not stimulate TGF-ß3 secretion or cell proliferation. The specific growth rate and lactate production increased proportionally to radiation dose. The use of an appropriate radiation dose improves the cell scaffold properties of biomaterials.


Assuntos
Materiais Biocompatíveis/química , Pele/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Varredura Diferencial de Calorimetria , Proliferação de Células/efeitos da radiação , Quitosana/química , Relação Dose-Resposta à Radiação , Raios gama , Gelatina/química , Humanos , Ácido Hialurônico/química , Lactatos/metabolismo , Microscopia Eletrônica de Varredura , Porosidade , Temperatura , Fator de Crescimento Transformador beta3/metabolismo
7.
Bioprocess Biosyst Eng ; 36(12): 1947-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23708649

RESUMO

Cell culture on biopolymeric scaffolds has provided treatments for tissue engineering. Biopolymeric mixtures based on gelatin (Ge), chitosan (Ch) and hyaluronic acid (Ha) have been used to make scaffolds for wound healing. Thermal and physical properties of scaffolds prepared with Ge, Ch and Ha were characterized. Thermal characterization was made by using differential scanning calorimetry (DSC), and physical characterization by gas pycnometry and scanning electron microscopy. The effects of Ge content and cross-linking on thermophysical properties were evaluated by means of a factorial experiment design (central composite face centered). Gelatin content was the main factor that affects the thermophysical properties (microstructure and thermal transitions) of the scaffold. The effect of Ge content of the scaffolds for tissue engineering was studied by seeding skin cells on the biopolymers. The cell attachment was not significantly modified at different Ge contents; however, the cell growth rate increased linearly with the decrease of the Ge content. This relationship together with the thermophysical characterization may be used to design scaffolds for tissue engineering.


Assuntos
Biopolímeros/química , Quitosana/química , Gelatina/química , Ácido Hialurônico/química , Engenharia Tecidual , Animais , Varredura Diferencial de Calorimetria , Adesão Celular , Divisão Celular , Células Cultivadas , Microscopia Eletrônica de Varredura , Ratos , Temperatura , Alicerces Teciduais
8.
Foods ; 12(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37835321

RESUMO

The impact of salivary alterations on chickpea protein structure in the elderly has not been well documented. This study aimed to understand the role of simulated salivary alterations in the conformational properties and secondary structure of the chickpea protein isolate (CPI). Whey protein isolate (WPI) was used as the reference. Protein dispersions (10%) were subjected to in vitro oral processing under simulated salivary conditions in both the elderly and adult subjects. Proteins and their oral counterparts were characterized in terms of their composition, charge, size, solubility, water absorption, molecular weight (MW), and secondary structure (Circular Dichroism and Raman spectroscopy). Under condition of simulated oral digestion in the elderly population, the ordered secondary protein structure was significantly affected, decreasing α-helix by ~36% and ~29% in CPI and WPI compared to the control (adult) population, respectively. An increase in the unordered random coil state was observed. These results could be attributed to an increase in electrolytes in the salivary composition. The structure of CPI is more stable than that of WPI because of its higher MW, more rigid structure, less charged surface, and different amino acid compositions. This study is meaningful in understanding how alterations in the elderly oral system affect protein conformation and is expected to improve the understanding of plant-based protein digestibility.

9.
Mol Nutr Food Res ; 67(21): e2300047, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667444

RESUMO

SCOPE: Quinoa intake exerts hypoglycemic and hypolipidemic effects in animals and humans. Although peptides from quinoa inhibit key enzymes involved in glucose homeostasis in vitro, their in vivo antidiabetic properties have not been investigated. METHODS AND RESULTS: This study evaluated the effect of oral administration of a quinoa protein hydrolysate (QH) produced through enzymatic hydrolysis and fractionation by electrodialysis with ultrafiltration membrane (EDUF) (FQH) on the metabolic and pregnancy outcomes of Lepdb/+ pregnant mice, a preclinical model of gestational diabetes mellitus. The 4-week pregestational consumption of 2.5 mg mL-1 of QH in water prevented glucose intolerance and improves hepatic insulin signaling in dams, also reducing fetal weights. Sequencing and bioinformatic analyses of the defatted FQH (FQHD) identified 11 peptides 6-10 amino acids long that aligned with the quinoa proteome and exhibited putative anti-dipeptidyl peptidase-4 (DPP-IV) activity, confirmed in vitro in QH, FQH, and FDQH fractions. Peptides homologous to mouse and human proteins enriched for biological processes related to glucose metabolism are also identified. CONCLUSION: Processing of quinoa protein may be used to develop a safe and effective nutritional intervention to control glucose intolerance during pregnancy. Further studies are required to confirm if this nutritional intervention is applicable to pregnant women.


Assuntos
Chenopodium quinoa , Diabetes Gestacional , Intolerância à Glucose , Humanos , Camundongos , Feminino , Animais , Gravidez , Diabetes Gestacional/terapia , Hidrolisados de Proteína/química , Ultrafiltração , Hipoglicemiantes , Peptídeos/química
10.
ACS Omega ; 8(50): 47883-47896, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144088

RESUMO

The development of scaffolds that mimic the aligned fibrous texture of the extracellular matrix has become an important requirement in muscle tissue engineering. Electrospinning is a widely used technique to fabricate biomimetic scaffolds. Therefore, a biopolymer blend composed of salmon gelatin (SG), chitosan (Ch), and poly(vinyl alcohol) (PVA) was developed by electrospinning onto a micropatterned (MP) collector, resulting in a biomimetic scaffold for seeding muscle cells. Rheology and surface tension studies were performed to determine the optimum solution concentration and viscosity for electrospinning. The scaffold microstructure was analyzed using SEM to determine the nanofiber's diameter and orientation. Blends of SG/Ch/PVA exhibited better electrospinnability and handling properties than pure PVA. The resulting scaffolds consist of a porous surface (∼46%), composed of a random fiber distribution, for a flat collector and scaffolds with regions of aligned nanofibers for the MP collector. The nanofiber diameters are 141 ± 2 and 151 ± 2 nm for the flat and MP collector, respectively. In vitro studies showed that myoblasts cultured on scaffold SG/Ch/PVA presented a high rate of cell growth. Furthermore, the aligned nanofibers on the SG/Ch/PVA scaffold provide a suitable platform for myoblast alignment.

11.
J Sci Food Agric ; 91(14): 2558-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21594873

RESUMO

BACKGROUND: A state diagram presents different physical states of a biomaterial as a function of solid content and temperature. Despite their technological interest, little information is available on protein systems such as gelatin/water mixtures. The objective of this work was to develop state diagrams of salmon gelatin (SG) and bovine gelatin (BG) in order to determine maximal freeze concentration parameters (T'(g) , T'(m) and X(s') ) and to relate possible differences to their biochemical characteristics. RESULTS: Biochemical characterisation of SG showed lower molecular weight and iminoacid concentration compared with BG. Likewise, the glass transition temperature (T(g) ) was lower for SG at X(s) > 0.8, which was associated with its lower molecular weight. Unexpectedly, the depression of freezing temperature (T(f) ) was greater for SG at X(s) > 0.1, which was associated with its higher ash content. Isothermal annealing produced effective values of T'(g) ≈ - 52 °C, T'(m) ≈ - 46 °C and X'(s) ≈ 0.6 for both gelatins. Interestingly, the enthalpy change associated with T'(m) (ΔH T m) was significantly higher for SG than for BG after annealing, indicating a higher proportion of ice present at about - 50 °C. CONCLUSION: Maximal freeze concentration parameters were similar between the two gelatins, though differences in biochemical properties were evident. The results show that there are likely different ways of interaction of SG and BG with water.


Assuntos
Produtos Pesqueiros/análise , Proteínas de Peixes/química , Gelatina/química , Salmo salar/metabolismo , Pele/metabolismo , Animais , Varredura Diferencial de Calorimetria , Coloides , Eletroforese em Gel de Poliacrilamida , Congelamento , Iminoácidos/análise , Modelos Químicos , Peso Molecular , Concentração Osmolar , Temperatura , Temperatura de Transição , Água/análise
12.
Polymers (Basel) ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872101

RESUMO

The development of new polymer scaffolds is essential for tissue engineering and for culturing cells. The use of non-mammalian bioactive components to formulate these materials is an emerging field. In our previous work, a scaffold based on salmon gelatin was developed and tested in animal models to regenerate tissues effectively and safely. Here, the incorporation of anatase nanoparticles into this scaffold was formulated, studying the new composite structure by scanning electron microscopy, differential scanning calorimetry and dynamic mechanical analysis. The incorporation of anatase nanoparticles modified the scaffold microstructure by increasing the pore size from 208 to 239 µm and significantly changing the pore shape. The glass transition temperature changed from 46.9 to 55.8 °C, and an increase in the elastic modulus from 79.5 to 537.8 kPa was observed. The biocompatibility of the scaffolds was tested using C2C12 myoblasts, modulating their attachment and growth. The anatase nanoparticles modified the stiffness of the material, making it possible to increase the growth of myoblasts cultured onto scaffolds, which envisions their use in muscle tissue engineering.

13.
Foods ; 9(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069986

RESUMO

In vitro meat is a novel concept of food science and biotechnology. Methods to produce in vitro meat employ muscle cells cultivated on a scaffold in a serum-free medium using a bioreactor. The microstructure of the scaffold is a key factor, because muscle cells must be oriented to generate parallel alignments of fibers. This work aimed to develop a new scaffold (microstructured film) to grow muscle fibers. The microstructured edible films were made using micromolding technology. A micromold was tailor-made using a laser cutting machine to obtain parallel fibers with a diameter in the range of 70-90 µm. Edible films were made by means of solvent casting using non-mammalian biopolymers. Myoblasts were cultured on flat and microstructured films at three cell densities. Cells on the microstructured films grew with a muscle fiber morphology, but in the case of using the flat film, they only produced unorganized cell proliferation. Myogenic markers were assessed using quantitative polymerase chain reaction. After 14 days, the expression of desmin, myogenin, and myosin heavy chain were significantly higher in microstructured films compared to the flat films. The formation of fiber morphology and the high expression of myogenic markers indicated that a microstructured edible film can be used for the production of in vitro meat.

14.
Polymers (Basel) ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709001

RESUMO

This study explores the molecular structuring of salmon gelatin (SG) with controlled molecular weight produced from salmon skin, and its relationship with its thermal and rheological properties. SG was produced under different pH conditions to produce samples with well-defined high (SGH), medium (SGM), and low (SGL) molecular weight. These samples were characterized in terms of their molecular weight (MW, capillary viscometry), molecular weight distribution (electrophoresis), amino acid profile, and Raman spectroscopy. These results were correlated with thermal (gelation energy) and rheological properties. SGH presented the higher MW (173 kDa) whereas SGL showed shorter gelatin polymer chains (MW < 65 kDa). Raman spectra and gelation energy suggest that amount of helical structures in gelatin is dependent on the molecular weight, which was well reflected by the higher viscosity and G' values for SGH. Interestingly, for all the molecular weight and molecular configuration tested, SG behaved as a strong gel (tan δ < 1), despite its low viscosity and low gelation temperature (3-10 °C). Hence, the molecular structuring of SG reflected directly on the thermal and viscosity properties, but not in terms of the viscoelastic strength of gelatin produced. These results give new insights about the relationship among structural features and macromolecular properties (thermal and rheological), which is relevant to design a low viscosity biomaterial with tailored properties for specific applications.

15.
Pharmaceutics ; 11(5)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027353

RESUMO

The design of new functional materials for skin tissue engineering is an area of constant research. In this work, a novel wound-dressing biomaterial with a porous structure, previously formulated using salmon-gelatin as main component (called salmon-gelatin biomaterial (SGB)), was tested in vivo using pigs as skin wound models. Four weeks after cutaneous excision and implantation in the animals, the healing process did not show apparent symptoms of inflammation or infection. Interestingly, the temporal evolution of wound size from 100% to around 10% would indicate a faster recovery when SGB was compared against a commercial control. Histological analysis established that wounds treated with SGB presented similar healing and epithelialization profiles with respect to the commercial control. Moreover, vascularized granulation tissue and epithelialization stages were clearly identified, indicating a proliferation phase. These results showed that SGB formulation allows cell viability to be maintained. The latter foresees the development of therapeutic alternatives for skin repair based on SGB fabricated using low cost production protocols.

16.
Carbohydr Polym ; 211: 31-38, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824094

RESUMO

The thermal transitions of biopolymers were subject of great discussion in the 90s due to their relevance in structure development during processing and stability on storage. In the present work two galactomannans, vinal gum and guar gum, were evaluated by DSC, DMA and LF-1H NMR in order to compare them, establishing their potential operational application range and promoting the use of the non-conventional VG in foods or other products. Three endothermal transitions appeared when heating the samples in the DSC: one at temperatures -90 to -10 °C (LTT), other around 50 °C (MTT) and a third one between 50 and 100 °C (HTT). Both LTT and HTT showed water content dependence and low ΔCp values, which difficulted the assignment of a glass transition. MTT appeared as an enthalpic relaxation independent on frequency or on water content. This transition was related to changes in mechanical properties and with the stabilization of proton mobility.

17.
Nat Commun ; 10(1): 3098, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308369

RESUMO

Design strategies for small diameter vascular grafts are converging toward native-inspired tissue engineered grafts. A new automated technology is presented that combines a dip-spinning methodology for depositioning concentric cell-laden hydrogel layers, with an adapted solution blow spinning (SBS) device for intercalated placement of aligned reinforcement nanofibres. This additive manufacture approach allows the assembly of bio-inspired structural configurations of concentric cell patterns with fibres at specific angles and wavy arrangements. The middle and outer layers were tuned to structurally mimic the media and adventitia layers of native arteries, enabling the fabrication of small bore grafts that exhibit the J-shape mechanical response and compliance of human coronary arteries. This scalable automated system can fabricate cellularized multilayer grafts within 30 min. Grafts were evaluated by hemocompatibility studies and a preliminary in vivo carotid rabbit model. The dip-spinning-SBS technology generates constructs with native mechanical properties and cell-derived biological activities, critical for clinical bypass applications.


Assuntos
Bioprótese , Prótese Vascular , Vasos Coronários/anatomia & histologia , Engenharia Tecidual/métodos , Animais , Implante de Prótese Vascular/instrumentação , Implante de Prótese Vascular/métodos , Ponte de Artéria Coronária/instrumentação , Ponte de Artéria Coronária/métodos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Teste de Materiais/métodos , Modelos Animais , Coelhos , Resistência à Tração
19.
Mater Sci Eng C Mater Biol Appl ; 102: 373-390, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147009

RESUMO

Tissue regeneration is witnessing a significant surge in advanced medicine. It requires the interaction of scaffolds with different cell types for efficient tissue formation post-implantation. The presence of tissue subtypes in more complex organs demands the co-existence of different biomaterials showing different hydrolysis rate for specialized cell-dependent remodeling. To expand the available toolbox of biomaterials with sufficient mechanical strength and variable rate of enzymatic degradation, a cold-adapted methacrylamide gelatin was developed from salmon skin. Compared with mammalian methacrylamide gelatin (GelMA), hydrogels derived from salmon GelMA displayed similar mechanical properties than the former. Nevertheless, salmon gelatin and salmon GelMA-derived hydrogels presented characteristics common of cold-adaptation, such as reduced activation energy for collagenase, increased enzymatic hydrolysis turnover of hydrogels, increased interconnected polypeptides molecular mobility and lower physical gelation capability. These properties resulted in increased cell-remodeling rate in vitro and in vivo, proving the potential and biological tolerance of this mechanically adequate cold-adapted biomaterial as alternative scaffold subtypes with improved cell invasion and tissue fusion capacity.


Assuntos
Acrilamidas/química , Materiais Biocompatíveis/química , Temperatura Baixa , Gelatina/química , Engenharia Tecidual/métodos , Animais , Bovinos , Proliferação de Células , Força Compressiva , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidrogéis/química , Hidrólise , Ponto Isoelétrico , Cinética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Salmão , Eletricidade Estática
20.
Int J Biol Macromol ; 109: 634-638, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29258897

RESUMO

The aim of this study was to evaluate the effect of plasticisers with different molecular weights (glycerol and sorbitol) on the structural relaxation kinetics of bovine gelatine films stored under the glass transition temperature (Tg). Plasticisers were tested at weight fractions of 0.0, 0.06 and 0.10. Films conditioned in environments under ∼44% relative humidity gave moisture contents (w/w) in the range 0.14-0.18. The enthalpy relaxation (ΔH) was determined using differential scanning calorimetry (DSC). Samples used had Tg values in the range 24-49 °C. After removing the thermal history (30 °C above Tg, 15 min), samples were isothermally stored at 10 °C below Tg for between 2 and 80 h. The addition of plasticisers induced a significant reduction in the rate of structural relaxation. The linearisation of ΔH by plotting against the logarithm of ageing time showed a reduction in the slope of samples plasticised with both polyols. The reduction in relaxation kinetics may be related to the ability of polyols to act as enhancers of molecular packing, as recently reported using positron spectroscopy (PALS). However, a direct correlation between the relaxation kinetics and the plasticiser's molecular weight could not be established, suggesting that this phenomenon may be governed by complex molecular gelatin-plasticiser-water interactions.


Assuntos
Gelatina/química , Membranas Artificiais , Polímeros/química , Animais , Bovinos , Glicerol/química , Fenômenos Mecânicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA