Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 11(7): 585-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20543838

RESUMO

The classical model of hematopoiesis posits the segregation of lymphoid and myeloid lineages as the earliest fate decision. The validity of this model in the mouse has been questioned; however, little is known about the lineage potential of human progenitors. Here we provide a comprehensive analysis of the human hematopoietic hierarchy by clonally mapping the developmental potential of seven progenitor classes from neonatal cord blood and adult bone marrow. Human multilymphoid progenitors, identified as a distinct population of Thy-1(neg-lo)CD45RA(+) cells in the CD34(+)CD38(-) stem cell compartment, gave rise to all lymphoid cell types, as well as monocytes, macrophages and dendritic cells, which indicated that these myeloid lineages arise in early lymphoid lineage specification. Thus, as in the mouse, human hematopoiesis does not follow a rigid model of myeloid-lymphoid segregation.


Assuntos
Antígenos CD/biossíntese , Linhagem da Célula , Células Dendríticas/citologia , Sangue Fetal/citologia , Hematopoese , Macrófagos/citologia , Adulto , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Separação Celular , Células Cultivadas , Células Dendríticas/fisiologia , Citometria de Fluxo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Recém-Nascido , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Mutantes , Células Mieloides/citologia , Células Mieloides/fisiologia
2.
Nature ; 510(7504): 268-72, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24776803

RESUMO

The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.


Assuntos
Estresse do Retículo Endoplasmático , Células-Tronco Hematopoéticas/citologia , Resposta a Proteínas não Dobradas/fisiologia , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteína Fosfatase 1/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
3.
Blood ; 127(16): 2018-27, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26834243

RESUMO

Acute myeloid leukemia (AML) is a genetically heterogeneous hematologic malignancy, which is initiated and driven by a rare fraction of leukemia stem cells (LSCs). Despite the difficulties of identifying a common LSC phenotype, there is increasing evidence that high expression of stem cell gene signatures is associated with poor clinical outcome. Identification of functionally distinct subpopulations in this disease is therefore crucial to dissecting the molecular machinery underlying LSC self-renewal. Here, we combined next-generation sequencing technology with in vivo assessment of LSC frequencies and identified the adhesion G protein-coupled receptor 56 (GPR56) as a novel and stable marker for human LSCs for the majority of AML samples. High GPR56 expression was significantly associated with high-risk genetic subgroups and poor outcome. Analysis of GPR56 in combination with CD34 expression revealed engraftment potential of GPR56(+)cells in both the CD34(-)and CD34(+)fractions, thus defining a novel LSC compartment independent of the CD34(+)CD38(-)LSC phenotype.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Animais , Separação Celular , Células Cultivadas , Células HEK293 , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Células-Tronco Neoplásicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Análise de Sobrevida
4.
Nature ; 481(7380): 157-63, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22237106

RESUMO

Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.


Assuntos
Predisposição Genética para Doença/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Idade de Início , Criança , Variações do Número de Cópias de DNA/genética , Genes ras/genética , Genoma Humano/genética , Genômica , Hematopoese/genética , Histonas/metabolismo , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Dados de Sequência Molecular , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Interleucina-7/genética , Proteína Reelina , Análise de Sequência de DNA , Transdução de Sinais/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Translocação Genética/genética
5.
Blood ; 119(5): 1200-7, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22160482

RESUMO

Gene regulatory networks that govern hematopoietic stem cells (HSCs) and leukemia-initiating cells (L-ICs) are deeply entangled. Thus, the discovery of compounds that target L-ICs while sparing HSC is an attractive but difficult endeavor. Presently, most screening approaches fail to counter-screen compounds against normal hematopoietic stem/progenitor cells (HSPCs). Here, we present a multistep in vitro and in vivo approach to identify compounds that can target L-ICs in acute myeloid leukemia (AML). A high-throughput screen of 4000 compounds on novel leukemia cell lines derived from human experimental leukemogenesis models yielded 80 hits, of which 10 were less toxic to HSPC. We characterized a single compound, kinetin riboside (KR), on AML L-ICs and HSPCs. KR demonstrated comparable efficacy to standard therapies against blast cells in 63 primary leukemias. In vitro, KR targeted the L-IC-enriched CD34(+)CD38(-) AML fraction, while sparing HSPC-enriched fractions, although these effects were mitigated on HSC assayed in vivo. KR eliminated L-ICs in 2 of 4 primary AML samples when assayed in vivo and highlights the importance of in vivo L-IC and HSC assays to measure function. Overall, we provide a novel approach to screen large drug libraries for the discovery of anti-L-IC compounds for human leukemias.


Assuntos
Adenosina/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos , Cinetina/uso terapêutico , Leucemia/tratamento farmacológico , Leucemia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Adenosina/análise , Adenosina/isolamento & purificação , Adenosina/farmacologia , Animais , Antineoplásicos/análise , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Cinetina/análise , Cinetina/isolamento & purificação , Cinetina/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Leuk Res ; 140: 107485, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579483

RESUMO

Over the years, the overall survival of older patients diagnosed with acute myeloid leukemia (AML) has not significantly increased. Although standard cytotoxic therapies that rapidly eliminate dividing myeloblasts are used to induce remission, relapse can occur due to surviving therapy-resistant leukemic stem cells (LSCs). Hence, anti-LSC strategies have become a key target to cure AML. We have recently shown that previously approved cardiac glycosides and glucocorticoids target LSC-enriched CD34+ cells in the primary human AML 8227 model with more efficacy than normal hematopoietic stem cells (HSCs). To translate these in vitro findings into humans, we developed a mathematical model of stem cell dynamics that describes the stochastic evolution of LSCs in AML post-standard-of-care. To this, we integrated population pharmacokinetic-pharmacodynamic (PKPD) models to investigate the clonal reduction potential of several promising candidate drugs in comparison to cytarabine, which is commonly used in high doses for consolidation therapy in AML patients. Our results suggest that cardiac glycosides (proscillaridin A, digoxin and ouabain) and glucocorticoids (budesonide and mometasone) reduce the expansion of LSCs through a decrease in their viability. While our model predicts that effective doses of cardiac glycosides are potentially too toxic to use in patients, simulations show the possibility of mometasone to prevent relapse through the glucocorticoid's ability to drastically reduce LSC population size. This work therefore highlights the prospect of these treatments for anti-LSC strategies and underlines the use of quantitative approaches to preclinical drug translation in AML.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Modelos Teóricos , Citarabina/uso terapêutico , Citarabina/farmacologia
7.
Leukemia ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39472547

RESUMO

Targeted therapeutics for high-risk cancers remain an unmet medical need. Here we report the results of a large-scale screen of over 11,000 molecules for their ability to inhibit the survival and growth in vitro of human leukemic cells from multiple sources including patient samples, de novo generated human leukemia models, and established human leukemic cell lines. The responses of cells from de novo models were most similar to those of patient samples, both of which showed striking differences from the cell-line responses. Analysis of differences in subtype-specific therapeutic vulnerabilities made possible by the scale of this screen enabled the identification of new specific modulators of apoptosis, while also highlighting the complex polypharmacology of anti-leukemic small molecules such as shikonin. These findings introduce a new platform for uncovering new therapeutic options for high-risk human leukemia, in addition to reinforcing the importance of the test sample choice for effective drug discovery.

8.
Blood ; 116(2): 193-200, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20404133

RESUMO

The nonobese diabetic/severe combined immune deficiency (NOD-scid) xenotransplantation model is the "gold standard" for assaying human hematopoietic stem cell activity. Systematic advancements, such as depletion of natural killer cell activity with anti-CD122 antibody, direct intrafemoral injection, and deletion or truncation of IL2Rgamma, have improved human cell engraftment; however, questions remain whether these mouse models are equivalent or, if not, which model is superior for assaying hematopoietic stem cell activity. To address this, we compared overall engraftment and multilineage differentiation of near-limiting doses of lineage-depleted human umbilical cord blood cells by direct intrafemoral injection into NOD/Lt-scid, NOD/Shi-scid, NOD/Lt-scid/IL2Rgamma(null) (NSG), and NOD/Shi-scid/IL2Rgamma(null) mice. Transplantation into NSG mice generated moderately higher human engraftment levels in bone marrow compared with other strains. At limiting doses, NSG mice of both sexes were 3.6-fold more sensitive in detecting SCID-repopulating cells compared with NOD/Lt-scid mice. However, NSG females exhibited higher engraftment at limiting cell doses, resulting in an overall increase in SCID-repopulating cell detection of 9-fold. Both NSG and NOD/Shi-scid/IL2Rgamma(null) support significantly improved engraftment in peripheral tissues compared with NOD/Lt-scid and NOD/Shi-scid mice, whereas NSG mice provide greater human engraftment in bone marrow than all other strains, especially at limiting doses.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Camundongos Endogâmicos NOD , Modelos Animais , Transplante Heterólogo/imunologia , Transplante Heterólogo/métodos , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Separação Celular , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Masculino , Camundongos
9.
Blood Adv ; 4(21): 5402-5413, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33147339

RESUMO

The leukemia stem cell (LSC) populations of acute myeloid leukemia (AML) exhibit phenotypic, genetic, and functional heterogeneity that contribute to therapy failure and relapse. Progress toward understanding the mechanistic basis for therapy resistance in LSCs has been hampered by difficulties in isolating cell fractions that enrich for the entire heterogeneous population of LSCs within individual AML samples. We previously reported that CD200 gene expression is upregulated in LSC-containing AML fractions. Here, we show that CD200 is present on a greater proportion of CD45dim blasts compared with more differentiated CD45high cells in AML patient samples. In 75% (49 of 65) of AML cases we examined, CD200 was expressed on ≥10% of CD45dim blasts; of these, CD200 identified LSCs within the blast population in 9 of 10 (90%) samples tested in xenotransplantation assays. CD200+ LSCs could be isolated from CD200+ normal HSCs with the use of additional markers. Notably, CD200 expression captured both CD34- and CD34+ LSCs within individual AML samples. Analysis of highly purified CD200+ LSC-containing fractions from NPM1-mutated AMLs, which are commonly CD34-, exhibited an enrichment of primitive gene expression signatures compared with unfractionated cells. Overall, our findings support CD200 as a novel LSC marker that is able to capture the entire LSC compartment from AML patient samples, including those with NPM1 mutation.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Biomarcadores , Diferenciação Celular , Humanos , Leucemia Mieloide Aguda/genética , Nucleofosmina
10.
Clin Cancer Res ; 25(24): 7594-7608, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540977

RESUMO

PURPOSE: Glioblastoma (GBM) is a fatal primary malignant brain tumor. GBM stem cells (GSC) contribute to resistance to the DNA-damaging chemotherapy, temozolomide. The epidermal growth factor receptor (EGFR) displays genomic alterations enabling DNA repair mechanisms in half of GBMs. We aimed to investigate EGFR/DNA combi-targeting in GBM. EXPERIMENTAL DESIGN: ZR2002 is a "combi-molecule" designed to inflict DNA damage through its chlorethyl moiety and induce irreversible EGFR tyrosine kinase inhibition. We assessed its in vitro efficacy in temozolomide-resistant patient-derived GSCs, mesenchymal temozolomide-sensitive and resistant in vivo-derived GSC sublines, and U87/EGFR isogenic cell lines stably expressing EGFR/wild-type or variant III (EGFRvIII). We evaluated its antitumor activity in mice harboring orthotopic EGFRvIII or mesenchymal TMZ-resistant GSC tumors. RESULTS: ZR2002 induced submicromolar antiproliferative effects and inhibited neurosphere formation of all GSCs with marginal effects on normal human astrocytes. ZR2002 inhibited EGF-induced autophosphorylation of EGFR, downstream Erk1/2 phosphorylation, increased DNA strand breaks, and induced activation of wild-type p53; the latter was required for its cytotoxicity through p53-dependent mechanism. ZR2002 induced similar effects on U87/EGFR cell lines and its oral administration significantly increased survival in an orthotopic EGFRvIII mouse model. ZR2002 improved survival of mice harboring intracranial mesenchymal temozolomide-resistant GSC line, decreased EGFR, Erk1/2, and AKT phosphorylation and was detected in tumor brain tissue by MALDI imaging mass spectrometry. CONCLUSIONS: These findings provide the molecular basis of binary EGFR/DNA targeting and uncover the oral bioavailability, blood-brain barrier permeability, and antitumor activity of ZR2002 supporting potential evaluation of this first-in-class drug in recurrent GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Quinazolinas/farmacologia , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Receptores ErbB/antagonistas & inibidores , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Exp Clin Cancer Res ; 38(1): 251, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196146

RESUMO

BACKGROUND: Cardiac glycosides are approved for the treatment of heart failure as Na+/K+ pump inhibitors. Their repurposing in oncology is currently investigated in preclinical and clinical studies. However, the identification of a specific cancer type defined by a molecular signature to design targeted clinical trials with cardiac glycosides remains to be characterized. Here, we demonstrate that cardiac glycoside proscillaridin A specifically targets MYC overexpressing leukemia cells and leukemia stem cells by causing MYC degradation, epigenetic reprogramming and leukemia differentiation through loss of lysine acetylation. METHODS: Proscillaridin A anticancer activity was investigated against a panel of human leukemia and solid tumor cell lines with different MYC expression levels, overexpression in vitro systems and leukemia stem cells. RNA-sequencing and differentiation studies were used to characterize transcriptional and phenotypic changes. Drug-induced epigenetic changes were studied by chromatin post-translational modification analysis, expression of chromatin regulators, chromatin immunoprecipitation, and mass-spectrometry. RESULTS: At a clinically relevant dose, proscillaridin A rapidly altered MYC protein half-life causing MYC degradation and growth inhibition. Transcriptomic profile of leukemic cells after treatment showed a downregulation of genes involved in MYC pathways, cell replication and an upregulation of hematopoietic differentiation genes. Functional studies confirmed cell cycle inhibition and the onset of leukemia differentiation even after drug removal. Proscillaridin A induced a significant loss of lysine acetylation in histone H3 (at lysine 9, 14, 18 and 27) and in non-histone proteins such as MYC itself, MYC target proteins, and a series of histone acetylation regulators. Global loss of acetylation correlated with the rapid downregulation of histone acetyltransferases. Importantly, proscillaridin A demonstrated anticancer activity against lymphoid and myeloid stem cell populations characterized by MYC overexpression. CONCLUSION: Overall, these results strongly support the repurposing of proscillaridin A in MYC overexpressing leukemia.


Assuntos
Antineoplásicos/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Genes myc , Insuficiência Cardíaca/etiologia , Leucemia/genética , Lisina/metabolismo , Proscilaridina/efeitos adversos , Acetilação , Antineoplásicos/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Relação Dose-Resposta a Droga , Epigênese Genética/efeitos dos fármacos , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Leucemia/complicações , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Modelos Biológicos , Proscilaridina/uso terapêutico , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
12.
Nat Commun ; 10(1): 2891, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253791

RESUMO

Our ability to manage acute myeloid leukemia (AML) is limited by our incomplete understanding of the epigenetic disruption central to leukemogenesis, including improper histone methylation. Here we examine 16 histone H3 genes in 434 primary AML samples and identify Q69H, A26P, R2Q, R8H and K27M/I mutations (1.6%), with higher incidence in secondary AML (9%). These mutations occur in pre-leukemic hematopoietic stem cells (HSCs) and exist in the major leukemic clones in patients. They increase the frequency of functional HSCs, alter differentiation, and amplify leukemic aggressiveness. These effects are dependent on the specific mutation. H3K27 mutation increases the expression of genes involved in erythrocyte and myeloid differentiation with altered H3K27 tri-methylation and K27 acetylation. The functional impact of histone mutations is independent of RUNX1 mutation, although they at times co-occur. This study establishes that H3 mutations are drivers of human pre-cancerous stem cell expansion and important early events in leukemogenesis.


Assuntos
Epigenômica , Regulação Leucêmica da Expressão Gênica/fisiologia , Histonas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Sequência de Bases , Células da Medula Óssea , Diferenciação Celular , Transformação Celular Neoplásica , DNA/genética , Drosophila melanogaster/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Mutação , Neoplasias Experimentais
13.
Blood Cancer J ; 8(6): 52, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29921955

RESUMO

Therapy for acute myeloid leukemia (AML) involves intense cytotoxic treatment and yet approximately 70% of AML are refractory to initial therapy or eventually relapse. This is at least partially driven by the chemo-resistant nature of the leukemic stem cells (LSCs) that sustain the disease, and therefore novel anti-LSC therapies could decrease relapses and improve survival. We performed in silico analysis of highly prognostic human AML LSC gene expression signatures using existing datasets of drug-gene interactions to identify compounds predicted to target LSC gene programs. Filtering against compounds that would inhibit a hematopoietic stem cell (HSC) gene signature resulted in a list of 151 anti-LSC candidates. Using a novel in vitro LSC assay, we screened 84 candidate compounds at multiple doses and confirmed 14 drugs that effectively eliminate human AML LSCs. Three drug families presenting with multiple hits, namely antihistamines (astemizole and terfenadine), cardiac glycosides (strophanthidin, digoxin and ouabain) and glucocorticoids (budesonide, halcinonide and mometasone), were validated for their activity against human primary AML samples. Our study demonstrates the efficacy of combining computational analysis of stem cell gene expression signatures with in vitro screening to identify novel compounds that target the therapy-resistant LSC at the root of relapse in AML.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Apoptose/genética , Biomarcadores , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Citarabina/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Transcriptoma
14.
J Clin Invest ; 127(6): 2392-2406, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481221

RESUMO

Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células , Leucemia/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cricetinae , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Genes BRCA1 , Genes BRCA2 , Genes Letais , Genes abl , Humanos , Leucemia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células-Tronco Embrionárias Murinas/fisiologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Exp Hematol ; 44(11): 1039-1043.e10, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27473565

RESUMO

The involvement of the complement pathway in cancer is supported by a growing body of evidence, and yet its role in acute myeloid leukemia (AML) has not been extensively studied. We examined the expression of 87 genes in the complement, coagulation, and fibrinolysis-proteolytic pathways in 374 cytogenetically normal AML samples and observed that these samples can be divided into subgroups on the basis of complement gene expression. Three complement regulatory genes were linked to poor outcome as individual factors in a multivariate analysis (CFH, CFD, and SERPING1) in multiple cohorts. The combined expression of these genes was significantly associated with poorer overall survival in two cohorts of patients <60 years of age, independent of other factors (p ≤ 0.0004). For patients with an intermediate molecular risk, this three-gene risk marker enabled stratification of patients into prognostic subgroups with survival ranging from 17.4% to 44.1%. Thus, the expression of complement pathway genes is linked to outcome in AML, and a three-gene risk marker may improve the risk assessment of patients.


Assuntos
Expressão Gênica , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Adolescente , Adulto , Análise por Conglomerados , Estudos de Coortes , Bases de Dados de Ácidos Nucleicos , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Cariotipagem , Leucemia Mieloide Aguda/diagnóstico , Masculino , Pessoa de Meia-Idade , Prognóstico , Transcriptoma , Adulto Jovem
16.
Oncotarget ; 7(32): 51991-52002, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27437771

RESUMO

Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.


Assuntos
Comunicação Celular/fisiologia , Transformação Celular Neoplásica/genética , Vesículas Extracelulares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Proteínas Proto-Oncogênicas p21(ras)/genética
17.
Cancer Cell ; 29(2): 214-28, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26832662

RESUMO

To investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC activity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-renewal of primary LSC in vivo. Compared with prior results showing miR-126 regulation of normal hematopoietic stem cell (HSC) cycling, these functional stem effects are opposite between LSC and HSC. Combined transcriptome and proteome analysis demonstrates that miR-126 targets the PI3K/AKT/MTOR signaling pathway, preserving LSC quiescence and promoting chemotherapy resistance.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , MicroRNAs/fisiologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos SCID , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
18.
Cell Stem Cell ; 14(1): 94-106, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24388174

RESUMO

The hematopoietic system sustains regeneration throughout life by balancing self-renewal and differentiation. To stay poised for mature blood production, hematopoietic stem cells (HSCs) maintain low-level expression of lineage-associated genes, a process termed lineage priming. Here, we modulated expression levels of Inhibitor of DNA binding (ID) proteins to ask whether lineage priming affects self-renewal of human HSCs. We found that lentiviral overexpression of ID proteins in cord blood HSCs biases myeloerythroid commitment at the expense of lymphoid differentiation. Conversely, reducing ID2 expression levels increases lymphoid potential. Mechanistically, ID2 inhibits the transcription factor E47 to attenuate B-lymphoid priming in HSCs and progenitors. Strikingly, ID2 overexpression also results in a 10-fold expansion of HSCs in serial limiting dilution assays, indicating that early lymphoid transcription factors antagonize human HSC self-renewal. The relationship between lineage priming and self-renewal can be exploited to increase expansion of transplantable human HSCs and points to broader implications for other stem cell populations.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Linfócitos/citologia , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Mieloides/citologia , Células Mieloides/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator 3 de Transcrição/genética , Fator 3 de Transcrição/metabolismo , Transplante Heterólogo
19.
J Clin Invest ; 123(1): 315-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202731

RESUMO

Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML.


Assuntos
Membranas Intracelulares/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Lisossomos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Membranas Intracelulares/patologia , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/genética , Lisossomos/fisiologia , Masculino , Mefloquina/farmacocinética , Mefloquina/farmacologia , Camundongos , Células-Tronco Neoplásicas/patologia , Permeabilidade/efeitos dos fármacos , Saccharomyces cerevisiae/genética
20.
Nat Med ; 17(9): 1086-93, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21873988

RESUMO

Xenograft studies indicate that some solid tumors and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSCs). Despite the promise of the CSC model, its relevance in humans remains uncertain. Here we show that acute myeloid leukemia (AML) follows a CSC model on the basis of sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSCs) using a sensitive xenograft assay. Analysis of gene expression from all functionally validated populations yielded an LSC-specific signature. Similarly, a hematopoietic stem cell (HSC) gene signature was established. Bioinformatic analysis identified a core transcriptional program shared by LSCs and HSCs, revealing the molecular machinery underlying 'stemness' properties. Both stem cell programs were highly significant independent predictors of patient survival and were found in existing prognostic signatures. Thus, determinants of stemness influence the clinical outcome of AML, establishing that LSCs are clinically relevant and not artifacts of xenotransplantation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/fisiopatologia , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Animais , Ensaio de Unidades Formadoras de Colônias , Biologia Computacional , Citometria de Fluxo , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA