Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Cell ; 177(3): 654-668.e15, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929900

RESUMO

New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neurogênese , Animais , Diferenciação Celular , Giro Denteado/metabolismo , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
2.
Cell ; 171(3): 573-587.e14, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033129

RESUMO

Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/metabolismo , Lâmina Nuclear/metabolismo , Células-Tronco/citologia , Animais , Genoma , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo
3.
Cell ; 166(2): 451-467, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419872

RESUMO

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.


Assuntos
Mesoderma/citologia , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Coração/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Linha Primitiva/citologia , Linha Primitiva/metabolismo , Análise de Célula Única , Somitos/metabolismo , Células-Tronco , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
4.
Mol Cell ; 82(19): 3613-3631.e7, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36108632

RESUMO

Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.


Assuntos
Impressão Genômica , RNA Longo não Codificante , Alelos , Animais , Cromatina/genética , Metilação de DNA , Proteína Adaptadora GRB10/genética , Coração , Camundongos
5.
Nature ; 619(7971): 707-715, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37495877

RESUMO

Engineering a patient's own T cells to selectively target and eliminate tumour cells has cured patients with untreatable haematologic cancers. These results have energized the field to apply chimaeric antigen receptor (CAR) T therapy throughout oncology. However, evidence from clinical and preclinical studies underscores the potential of CAR T therapy beyond oncology in treating autoimmunity, chronic infections, cardiac fibrosis, senescence-associated disease and other conditions. Concurrently, the deployment of new technologies and platforms provides further opportunity for the application of CAR T therapy to noncancerous pathologies. Here we review the rationale behind CAR T therapy, current challenges faced in oncology, a synopsis of preliminary reports in noncancerous diseases, and a discussion of relevant emerging technologies. We examine potential applications for this therapy in a wide range of contexts. Last, we highlight concerns regarding specificity and safety and outline the path forward for CAR T therapy beyond cancer.


Assuntos
Envelhecimento , Doenças Autoimunes , Fibrose , Cardiopatias , Imunoterapia Adotiva , Infecções , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/tendências , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/imunologia , Doenças Autoimunes/terapia , Infecções/terapia , Fibrose/terapia , Envelhecimento/patologia , Cardiopatias/terapia
6.
Nature ; 610(7931): 381-388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198800

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Assuntos
COVID-19 , Epigênese Genética , Histonas , Interações entre Hospedeiro e Microrganismos , Mimetismo Molecular , SARS-CoV-2 , Proteínas Virais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Epigenoma/genética , Histonas/química , Histonas/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Nature ; 605(7908): 160-165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477756

RESUMO

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Animais , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Humanos
8.
Genes Dev ; 32(1): 4-13, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440224

RESUMO

The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of "chromatin competence" that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development.


Assuntos
Coração/crescimento & desenvolvimento , Miocárdio/citologia , Animais , Linhagem da Célula , Cromatina/química , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
9.
Circulation ; 150(13): 1050-1058, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39325497

RESUMO

Ischemic heart disease is a leading cause of death worldwide, manifested clinically as myocardial infarction (and ischemic cardiomyopathy. Presently, there exists a notable scarcity of efficient interventions to restore cardiac function after myocardial infarction. Cumulative evidence suggests that impaired tissue immunity within the ischemic microenvironment aggravates cardiac dysfunction, contributing to progressive heart failure. Recent research breakthroughs propose immunotherapy as a potential approach by leveraging immune and stroma cells to recalibrate the immune microenvironment, holding significant promise for the treatment of ischemic heart disease. In this Primer, we highlight three emerging strategies for immunomodulatory therapy in managing ischemic cardiomyopathy: targeting vascular endothelial cells to rewire tissue immunity, reprogramming myeloid cells to bolster their reparative function, and utilizing adoptive T cell therapy to ameliorate fibrosis. We anticipate that immunomodulatory therapy will offer exciting opportunities for ischemic heart disease treatment.


Assuntos
Isquemia Miocárdica , Humanos , Isquemia Miocárdica/terapia , Isquemia Miocárdica/imunologia , Animais , Imunomodulação , Células Endoteliais/imunologia , Imunoterapia/métodos
10.
Nature ; 573(7774): 430-433, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511695

RESUMO

Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.


Assuntos
Linfócitos T CD8-Positivos , Fibrose Endomiocárdica/terapia , Imunoterapia Adotiva , Animais , Antígenos de Superfície/imunologia , Linfócitos T CD8-Positivos/imunologia , Fibrose Endomiocárdica/imunologia , Fibroblastos/imunologia , Humanos , Masculino , Camundongos , Ovalbumina/imunologia , Cicatrização
12.
Am J Physiol Cell Physiol ; 326(1): C107-C111, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047297

RESUMO

Cardiac fibrosis remains an unmet clinical need that has so far proven difficult to eliminate using current therapies. As such, novel technologies are needed that can target the pathological fibroblasts responsible for fibrosis and adverse tissue remodeling. mRNA encapsulated in lipid nanoparticles (LNPs) is an emerging technology that could offer a solution to this problem. Indeed, this strategy has already shown clinical success with the mRNA COVID-19 vaccines. In this AJP perspective, we discuss how this technology can be leveraged to specifically target cardiac fibrosis via several complementary strategies. First, we discuss the successful preclinical studies in a mouse model of cardiac injury to use T cell-targeted LNPs to produce anti-fibroblast chimeric antigen receptor T (CAR T) cells in vivo that could effectively reduce cardiac fibrosis. Next, we discuss how these T cell-targeted LNPs could be used to generate T regulatory cells (T-regs), which could migrate to areas of active fibrosis and dampen inflammation through paracrine effects as an alternative to active fibroblast killing by CAR T cells. Finally, we conclude with thoughts on directly targeting pathological fibroblasts to deliver RNAs that could interfere with fibroblast activation and activity. We hope this discussion serves as a catalyst for finding approaches that harness the power of mRNA and LNPs to eliminate cardiac fibrosis and treat other fibrotic diseases amenable to such interventions.NEW & NOTEWORTHY Cardiac fibrosis has few specific interventions available for effective treatment. mRNA encapsulated in lipid nanoparticles could provide a novel solution for treating cardiac fibrosis. This AJP perspective discusses what possible strategies could rely on this technology, from in vivo-produced CAR T cells that kill pathological fibroblasts to in vivo-produced T regulatory cells that dampen the concomitant profibrotic inflammatory cells contributing to remodeling, directly targeting fibroblasts and eliminating them or silencing profibrotic pathways.


Assuntos
Vacinas contra COVID-19 , Cardiomiopatias , Camundongos , Animais , Humanos , Vacinas contra COVID-19/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cardiomiopatias/metabolismo , Fibroblastos/metabolismo , Fibrose
15.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884720

RESUMO

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Metilação de DNA/genética , Cardiopatias Congênitas/genética , Histonas/metabolismo , Histonas/genética , Processamento de Proteína Pós-Traducional , Camundongos , Cardiopatias/genética , Cardiopatias/metabolismo , Mutação
16.
Circ Res ; 128(11): 1766-1779, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34043424

RESUMO

Cardiac injury remains a major cause of morbidity and mortality worldwide. Despite significant advances, a full understanding of why the heart fails to fully recover function after acute injury, and why progressive heart failure frequently ensues, remains elusive. No therapeutics, short of heart transplantation, have emerged to reliably halt or reverse the inexorable progression of heart failure in the majority of patients once it has become clinically evident. To date, most pharmacological interventions have focused on modifying hemodynamics (reducing afterload, controlling blood pressure and blood volume) or on modifying cardiac myocyte function. However, important contributions of the immune system to normal cardiac function and the response to injury have recently emerged as exciting areas of investigation. Therapeutic interventions aimed at harnessing the power of immune cells hold promise for new treatment avenues for cardiac disease. Here, we review the immune response to heart injury, its contribution to cardiac fibrosis, and the potential of immune modifying therapies to affect cardiac repair.


Assuntos
Insuficiência Cardíaca/terapia , Traumatismos Cardíacos/terapia , Imunoterapia/métodos , Imunidade Adaptativa , Linfócitos B/fisiologia , Bioengenharia , Citocinas/metabolismo , Progressão da Doença , Eosinófilos/fisiologia , Fibroblastos/fisiologia , Fibrose , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/imunologia , Traumatismos Cardíacos/imunologia , Humanos , Imunoterapia Adotiva , Macrófagos/fisiologia , Mastócitos/fisiologia , Monócitos/fisiologia , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Neutrófilos/fisiologia , Receptores de Antígenos Quiméricos , Linfócitos T/fisiologia , Linfócitos T/transplante
17.
Nucleic Acids Res ; 49(11): 6181-6195, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34023908

RESUMO

Nuclear architecture influences gene regulation and cell identity by controlling the three-dimensional organization of genes and their distal regulatory sequences, which may be far apart in linear space. The genome is functionally and spatially segregated in the eukaryotic nucleus with transcriptionally active regions in the nuclear interior separated from repressive regions, including those at the nuclear periphery. Here, we describe the identification of a novel type of nuclear peripheral chromatin domain that is enriched for tissue-specific transcriptional enhancers. Like other chromatin at the nuclear periphery, these regions are marked by H3K9me2. But unlike the nuclear peripheral Lamina-Associated Domains (LADs), these novel, enhancer-rich domains have limited Lamin B interaction. We therefore refer to them as H3K9me2-Only Domains (KODs). In mouse embryonic stem cells, KODs are found in Hi-C-defined A compartments and feature relatively accessible chromatin. KODs are characterized by low gene expression and enhancers located in these domains bear the histone marks of an inactive or poised state. These results indicate that KODs organize a subset of inactive, tissue-specific enhancers at the nuclear periphery. We hypothesize that KODs may play a role in facilitating and perhaps constraining the enhancer-promoter interactions underlying spatiotemporal regulation of gene expression programs in differentiation and development.


Assuntos
Elementos Facilitadores Genéticos , Código das Histonas , Animais , Linhagem Celular , Núcleo Celular/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Lamina Tipo B/metabolismo , Camundongos , Especificidade de Órgãos , Transcrição Gênica
18.
Development ; 146(3)2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723106

RESUMO

Dynamic organization of chromatin within the three-dimensional nuclear space has been postulated to regulate gene expression and cell fate. Here, we define the genome-wide distribution of nuclear peripheral heterochromatin as a multipotent P19 cell adopts either a neural or a cardiac fate. We demonstrate that H3K9me2-marked nuclear peripheral heterochromatin undergoes lineage-specific reorganization during cell-fate determination. This is associated with spatial repositioning of genomic loci away from the nuclear periphery as shown by 3D immuno-FISH. Locus repositioning is not always associated with transcriptional changes, but a subset of genes is upregulated. Mef2c is specifically repositioned away from the nuclear periphery during early neurogenic differentiation, but not during early cardiogenic differentiation, with associated transcript upregulation. Myocd is specifically repositioned during early cardiogenic differentiation, but not during early neurogenic differentiation, and is transcriptionally upregulated at later stages of cardiac differentiation. We provide experimental evidence for lineage-specific regulation of nuclear architecture during cell-fate determination in a mouse cell line.


Assuntos
Diferenciação Celular , Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Células-Tronco Multipotentes/metabolismo , Linhagem Celular , Heterocromatina/genética , Histonas/genética , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Regulação para Cima
19.
Genes Dev ; 28(6): 576-93, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24637115

RESUMO

Notch1 is required to generate the earliest embryonic hematopoietic stem cells (HSCs); however since Notch-deficient embryos die early in gestation, additional functions for Notch in embryonic HSC biology have not been described. We used two complementary genetic models to address this important biological question. Unlike Notch1-deficient mice, mice lacking the conserved Notch1 transcriptional activation domain (TAD) show attenuated Notch1 function in vivo and survive until late gestation, succumbing to multiple cardiac abnormalities. Notch1 TAD-deficient HSCs emerge and successfully migrate to the fetal liver but are decreased in frequency by embryonic day 14.5. In addition, TAD-deficient fetal liver HSCs fail to compete with wild-type HSCs in bone marrow transplant experiments. This phenotype is independently recapitulated by conditional knockout of Rbpj, a core Notch pathway component. In vitro analysis of Notch1 TAD-deficient cells shows that the Notch1 TAD is important to properly assemble the Notch1/Rbpj/Maml trimolecular transcription complex. Together, these studies reveal an essential role for the Notch1 TAD in fetal development and identify important cell-autonomous functions for Notch1 signaling in fetal HSC homeostasis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Células-Tronco Fetais , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Mutação , Estrutura Terciária de Proteína/genética , Receptor Notch1/genética , Análise de Sobrevida
20.
Dev Biol ; 466(1-2): 90-98, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712024

RESUMO

Spatial organization of the genome in the nucleus plays a critical role in development and regulation of transcription. A genomic region that resides at the nuclear periphery is part of the chromatin layer marked with histone H3 lysine 9 dimethyl (H3K9me2), but chromatin reorganization during cell differentiation can cause movement in and out of this nuclear compartment with patterns specific for individual cell fates. Here we describe a CRISPR-based system that allows visualization coupled with forced spatial relocalization of a target genomic locus in live cells. We demonstrate that a specified locus can be tethered to the nuclear periphery through direct binding to a dCas9-Lap2ß fusion protein at the nuclear membrane, or via targeting of a histone methyltransferase (HMT), G9a fused to dCas9, that promotes H3K9me2 labeling and localization to the nuclear periphery. The enzymatic activity of the HMT is sufficient to promote this repositioning, while disruption of the catalytic activity abolishes the localization effect. We further demonstrate that dCas9-G9a-mediated localization to the nuclear periphery is independent of nuclear actin polymerization. Our data suggest a function for epigenetic histone modifying enzymes in spatial chromatin organization and provide a system for tracking and labeling targeted genomic regions in live cells.


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Epigênese Genética , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Cromatina/genética , Células HEK293 , Histona Metiltransferases/genética , Histonas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA