Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 157(3): 636-50, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766809

RESUMO

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Assuntos
Doenças do Sistema Nervoso Central/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Doenças do Sistema Nervoso Central/patologia , Cérebro/patologia , Pré-Escolar , Endorribonucleases/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microcefalia/genética , Doenças do Sistema Nervoso Periférico/patologia , RNA de Transferência/genética , Proteínas de Ligação a RNA
2.
Am J Hum Genet ; 109(11): 2049-2067, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36283406

RESUMO

Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Genoma , Haploinsuficiência , Fatores de Transcrição MEF2/genética , Neurônios , Transcrição Gênica
3.
Am J Hum Genet ; 109(10): 1789-1813, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36152629

RESUMO

Chromosome 16p11.2 reciprocal genomic disorder, resulting from recurrent copy-number variants (CNVs), involves intellectual disability, autism spectrum disorder (ASD), and schizophrenia, but the responsible mechanisms are not known. To systemically dissect molecular effects, we performed transcriptome profiling of 350 libraries from six tissues (cortex, cerebellum, striatum, liver, brown fat, and white fat) in mouse models harboring CNVs of the syntenic 7qF3 region, as well as cellular, transcriptional, and single-cell analyses in 54 isogenic neural stem cell, induced neuron, and cerebral organoid models of CRISPR-engineered 16p11.2 CNVs. Transcriptome-wide differentially expressed genes were largely tissue-, cell-type-, and dosage-specific, although more effects were shared between deletion and duplication and across tissue than expected by chance. The broadest effects were observed in the cerebellum (2,163 differentially expressed genes), and the greatest enrichments were associated with synaptic pathways in mouse cerebellum and human induced neurons. Pathway and co-expression analyses identified energy and RNA metabolism as shared processes and enrichment for ASD-associated, loss-of-function constraint, and fragile X messenger ribonucleoprotein target gene sets. Intriguingly, reciprocal 16p11.2 dosage changes resulted in consistent decrements in neurite and electrophysiological features, and single-cell profiling of organoids showed reciprocal alterations to the proportions of excitatory and inhibitory GABAergic neurons. Changes both in neuronal ratios and in gene expression in our organoid analyses point most directly to calretinin GABAergic inhibitory neurons and the excitatory/inhibitory balance as targets of disruption that might contribute to changes in neurodevelopmental and cognitive function in 16p11.2 carriers. Collectively, our data indicate the genomic disorder involves disruption of multiple contributing biological processes and that this disruption has relative impacts that are context specific.


Assuntos
Transtorno do Espectro Autista , Transtornos Cromossômicos , Deficiência Intelectual , Animais , Transtorno do Espectro Autista/genética , Calbindina 2/genética , Córtex Cerebral , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA , Genômica , Humanos , Deficiência Intelectual/genética , Camundongos , Neurônios , RNA
4.
Am J Hum Genet ; 108(11): 2145-2158, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34672987

RESUMO

Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations. We used this strategy to investigate the molecular consequences of genetic variation in THAP1, which encodes a transcription factor linked to neural differentiation. Multiple pathogenic mutations associated with dystonia cluster within distinct THAP1 functional domains and are predicted to alter DNA-binding properties and/or protein interactions differently, yet the relative impact of these varied changes on molecular signatures and neural deficits is unclear. To determine the effects of these mutations on THAP1 transcriptional activity, we engineered an allelic series of eight alterations in a common induced pluripotent stem cell background and differentiated these lines into a panel of near-isogenic neural stem cells (n = 94 lines). Transcriptome profiling followed by joint analysis of the most robust signatures across mutations identified a convergent pattern of dysregulated genes functionally related to neurodevelopment, lysosomal lipid metabolism, and myelin. On the basis of these observations, we examined mice bearing Thap1-disruptive alleles and detected significant changes in myelin gene expression and reduction of myelin structural integrity relative to control mice. These results suggest that deficits in neurodevelopment and myelination are common consequences of dystonia-associated THAP1 mutations and highlight the potential role of neuron-glial interactions in the pathogenesis of dystonia.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/genética , Distonia/genética , Distúrbios Distônicos/genética , Mutação , Bainha de Mielina/genética , Alelos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Camundongos
5.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537238

RESUMO

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Assuntos
Processamento Alternativo , Caderinas , Histonas , Cromatina , Histonas/metabolismo , Lisina/metabolismo , RNA/metabolismo , Caderinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Transtorno do Espectro Autista/genética
6.
J Biol Chem ; 296: 100157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273014

RESUMO

Meningiomas (MNs), arising from the arachnoid/meningeal layer, are nonresponsive to chemotherapies, with ∼50% showing loss of the Neurofibromatosis 2 (NF2) tumor suppressor gene. Previously, we established NF2 loss activates mechanistic target of rapamycin complex 1 (mTORC1) and mechanistic target of rapamycin complex 2 (mTORC2) signaling, leading to clinical trials for NF2 and MN. Recently our omics studies identified activated ephrin (EPH) receptor and Src family kinases upon NF2 loss. Here, we report increased expression of several ligands in NF2-null human arachnoidal cells (ACs) and the MN cell line Ben-Men-1, particularly neuregulin-1/heregulin (NRG1), and confirm increased NRG1 secretion and activation of V-ERB-B avian erythroblastic leukemia viral oncogene homolog 3 (ERBB3) receptor kinase. Conditioned-medium from NF2-null ACs or exogenous NRG1 stimulated ERBB3, EPHA2, and mTORC1/2 signaling, suggesting pathway crosstalk. NF2-null cells treated with an ERBB3-neutralizing antibody partially downregulated mTOR pathway activation but showed no effect on viability. mTORC1/2 inhibitor treatment decreased NRG1 expression and downregulated ERBB3 while re-activating pAkt T308, suggesting a mechanism independent of NRG1-ERBB3 but likely involving activation of another upstream receptor kinase. Transcriptomics after mTORC1/2 inhibition confirmed decreased ERBB3/ERBB4 while revealing increased expression of insulin-like growth factor receptor 1 (IGF1R). Drug treatment co-targeting mTORC1/2 and IGF1R/insulin receptor attenuated pAkt T308 and showed synergistic effects on viability. Our findings indicate potential autocrine signaling where NF2 loss leads to secretion/activation of NRG1-ERBB3 signaling. mTORC1/2 inhibition downregulates NRG1-ERBB3, while upregulating pAkt T308 through an adaptive response involving IGF1R/insulin receptor and co-targeting these pathways may prove effective for treatment of NF2-deficient MN.


Assuntos
Comunicação Autócrina/genética , Neuregulina-1/genética , Neurofibromina 2/genética , Receptor ErbB-3/genética , Receptor IGF Tipo 1/genética , Serina-Treonina Quinases TOR/genética , Anticorpos Monoclonais Humanizados/farmacologia , Benzamidas/farmacologia , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Lapatinib/farmacologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/metabolismo , Meningioma/patologia , Morfolinas/farmacologia , Neuregulina-1/antagonistas & inibidores , Neuregulina-1/metabolismo , Neurofibromina 2/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Triazinas/farmacologia
8.
J Med Genet ; 58(3): 205-212, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32430360

RESUMO

BACKGROUND: Ubiquitination has a central role in numerous biological processes, including cell development, stress responses and ageing. Perturbed ubiquitination has been implicated in human diseases ranging from cancer to neurodegenerative diseases. SIAH1 encodes a RING-type E3 ubiquitin ligase involved in protein ubiquitination. Among numerous other roles, SIAH1 regulates metabotropic glutamate receptor signalling and affects neural cell fate. Moreover, SIAH1 positively regulates Wnt signalling through ubiquitin-mediated degradation of Axin and accumulation of ß-catenin. METHODS: Trio exome sequencing followed by Sanger validation was undertaken in five individuals with syndromic developmental delay. Three-dimensional structural modelling was used to predict pathogenicity of affected residues. Wnt stimulatory activity was measured by luciferase reporter assays and Axin degradation assays in HEK293 cells transfected with wild-type and mutant SIAH1 expression plasmids. RESULTS: We report five unrelated individuals with shared features of developmental delay, infantile hypotonia, dysmorphic features and laryngomalacia, in whom exome sequencing identified de novo monoallelic variants in SIAH1. In silico protein modelling suggested alteration of conserved functional sites. In vitro experiments demonstrated loss of Wnt stimulatory activity with the SIAH1 mutants, suggesting variant pathogenicity. CONCLUSION: Our results lend support to SIAH1 as a candidate Mendelian disease gene for a recognisable syndrome, further strengthening the connection between SIAH1 and neurodevelopmental disorders. Furthermore, the results suggest that dysregulation of the Wnt/ß-catenin pathway may be involved in the pathogenesis.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Hipotonia Muscular/genética , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética , Proteína Axina/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Face/anormalidades , Face/patologia , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Hipotonia Muscular/patologia , Proteólise , Via de Sinalização Wnt/genética , beta Catenina/genética
9.
PLoS Genet ; 15(3): e1007765, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30897080

RESUMO

Rare individuals with inactivating mutations in the Huntington's disease gene (HTT) exhibit variable abnormalities that imply essential HTT roles during organ development. Here we report phenotypes produced when increasingly severe hypomorphic mutations in the murine HTT orthologue Htt, (HdhneoQ20, HdhneoQ50, HdhneoQ111), were placed over a null allele (Hdhex4/5). The most severe hypomorphic allele failed to rescue null lethality at gastrulation, while the intermediate, though still severe, alleles yielded recessive perinatal lethality and a variety of fetal abnormalities affecting body size, skin, skeletal and ear formation, and transient defects in hematopoiesis. Comparative molecular analysis of wild-type and Htt-null retinoic acid-differentiated cells revealed gene network dysregulation associated with organ development that nominate polycomb repressive complexes and miRNAs as molecular mediators. Together these findings demonstrate that Htt is required both pre- and post-gastrulation to support normal development.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Alelos , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Frequência do Gene/genética , Genótipo , Proteína Huntingtina/fisiologia , Camundongos/embriologia , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo
10.
Hum Mol Genet ; 28(9): 1474-1486, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590535

RESUMO

The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Memória de Curto Prazo , Complexos Ubiquitina-Proteína Ligase/deficiência , Animais , Comportamento Animal , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Marcação de Genes , Loci Gênicos , Genótipo , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Deleção de Sequência , Fatores Sexuais
11.
Am J Med Genet A ; 185(1): 190-195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026150

RESUMO

AMOTL1 belongs to the Motin family of proteins that are involved in organogenesis and tumorigenesis through regulation of cellular migration, tube formation, and angiogenesis. While involvement of all AMOTs in development or suppression of cancers is relatively well described, little is known about the congenital phenotype of pathogenic variants in these genes in humans. Recently, a heterozygous variant in AMOTL1 was published in association with orofacial clefts and cardiac abnormalities in an affected father and his daughter. However, studies in mice did not recapitulate the human phenotype and the case was summarized as inconclusive. We present a female infant with cleft lip and palate, imperforate anus and dysmorphic features, in whom trio exome sequencing revealed a de novo variant in AMOTL1 affecting a highly conserved amino acid (c.479C>T; p.[Pro160Leu]). Bioinformatic predictions and in silico modeling supported pathogenicity. This case reinforces the conjecture regarding the disruptive effect of pathogenic variants in AMOTL1 on organ formation in humans. Studies of additional families will reveal the full phenotypic spectrum associated with this multiple malformation syndrome.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Cardiopatias Congênitas/genética , Proteínas de Membrana/genética , Adulto , Angiomotinas , Fenda Labial/complicações , Fenda Labial/patologia , Fissura Palatina/complicações , Fissura Palatina/patologia , Pai , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Masculino , Sequenciamento do Exoma
12.
Am J Hum Genet ; 99(4): 831-845, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27640307

RESUMO

ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein implicated in mitochondrial dynamics, nucleoid organization, protein translation, cell growth, and cholesterol metabolism. We identified a recurrent de novo ATAD3A c.1582C>T (p.Arg528Trp) variant by whole-exome sequencing (WES) in five unrelated individuals with a core phenotype of global developmental delay, hypotonia, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. We also describe two families with biallelic variants in ATAD3A, including a homozygous variant in two siblings, and biallelic ATAD3A deletions mediated by nonallelic homologous recombination (NAHR) between ATAD3A and gene family members ATAD3B and ATAD3C. Tissue-specific overexpression of borR534W, the Drosophila mutation homologous to the human c.1582C>T (p.Arg528Trp) variant, resulted in a dramatic decrease in mitochondrial content, aberrant mitochondrial morphology, and increased autophagy. Homozygous null bor larvae showed a significant decrease of mitochondria, while overexpression of borWT resulted in larger, elongated mitochondria. Finally, fibroblasts of an affected individual exhibited increased mitophagy. We conclude that the p.Arg528Trp variant functions through a dominant-negative mechanism that results in small mitochondria that trigger mitophagy, resulting in a reduction in mitochondrial content. ATAD3A variation represents an additional link between mitochondrial dynamics and recognizable neurological syndromes, as seen with MFN2, OPA1, DNM1L, and STAT2 mutations.


Assuntos
Adenosina Trifosfatases/genética , Alelos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Mutação , Doenças do Sistema Nervoso/genética , ATPases Associadas a Diversas Atividades Celulares , Adulto , Animais , Axônios/patologia , Cardiomiopatias/genética , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Drosophila melanogaster/genética , Feminino , Fibroblastos , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Hipotonia Muscular/genética , Músculos/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Atrofia Óptica/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Síndrome , Adulto Jovem
13.
Hum Mol Genet ; 24(9): 2442-57, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25574027

RESUMO

The CAG repeat expansion in the Huntington's disease gene HTT extends a polyglutamine tract in mutant huntingtin that enhances its ability to facilitate polycomb repressive complex 2 (PRC2). To gain insight into this dominant gain of function, we mapped histone modifications genome-wide across an isogenic panel of mouse embryonic stem cell (ESC) and neuronal progenitor cell (NPC) lines, comparing the effects of Htt null and different size Htt CAG mutations. We found that Htt is required in ESC for the proper deposition of histone H3K27me3 at a subset of 'bivalent' loci but in NPC it is needed at 'bivalent' loci for both the proper maintenance and the appropriate removal of this mark. In contrast, Htt CAG size, though changing histone H3K27me3, is prominently associated with altered histone H3K4me3 at 'active' loci. The sets of ESC and NPC genes with altered histone marks delineated by the lack of huntingtin or the presence of mutant huntingtin, though distinct, are enriched in similar pathways with apoptosis specifically highlighted for the CAG mutation. Thus, the manner by which huntingtin function facilitates PRC2 may afford mutant huntingtin with multiple opportunities to impinge upon the broader machinery that orchestrates developmentally appropriate chromatin status.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Expansão das Repetições de Trinucleotídeos , Alelos , Animais , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Análise por Conglomerados , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Proteína Huntingtina , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/química , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/química , Complexo Repressor Polycomb 2/genética
14.
Am J Hum Genet ; 94(6): 870-83, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906019

RESUMO

Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described "distal" 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis.


Assuntos
Transtorno Autístico/genética , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Animais , Córtex Cerebral/patologia , Criança , Variações do Número de Cópias de DNA , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Linhagem , Fenótipo , Análise de Sequência de RNA , Transcrição Gênica
15.
Am J Med Genet A ; 173(9): 2478-2484, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691782

RESUMO

Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas , Adolescente , Deficiências do Desenvolvimento/fisiopatologia , Face/fisiopatologia , Duplicação Gênica/genética , Deformidades Congênitas da Mão/fisiopatologia , Haploinsuficiência/genética , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Proteômica
16.
Proc Natl Acad Sci U S A ; 111(42): E4468-77, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25294932

RESUMO

Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10(-8)) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10(-10)). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Axônios/metabolismo , Sítios de Ligação , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Cromatina/metabolismo , DNA Helicases/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Heterozigoto , Humanos , Megalencefalia/metabolismo , Mutação , Neoplasias/metabolismo , Neurônios/metabolismo , Ligação Proteica , Fatores de Risco , Análise de Sequência de RNA , Software , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
EMBO J ; 31(5): 1095-108, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22343943

RESUMO

The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activity. Conversely, pharmacological inhibition of mTORC1, as well as starvation and lysosomal disruption, activates TFEB by promoting its nuclear translocation. In addition, the transcriptional response of lysosomal and autophagic genes to either lysosomal dysfunction or pharmacological inhibition of mTORC1 is suppressed in TFEB-/- cells. Interestingly, the Rag GTPase complex, which senses lysosomal amino acids and activates mTORC1, is both necessary and sufficient to regulate starvation- and stress-induced nuclear translocation of TFEB. These data indicate that the lysosome senses its content and regulates its own biogenesis by a lysosome-to-nucleus signalling mechanism that involves TFEB and mTOR.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/fisiologia , Lisossomos/fisiologia , Proteínas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Imunoprecipitação , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Modelos Biológicos , Complexos Multiproteicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Serina-Treonina Quinases TOR
18.
Nat Methods ; 10(3): 221-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23353650

RESUMO

Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.


Assuntos
Biologia Computacional/métodos , Biologia Molecular/métodos , Anotação de Sequência Molecular , Proteínas/fisiologia , Algoritmos , Animais , Bases de Dados de Proteínas , Exorribonucleases/classificação , Exorribonucleases/genética , Exorribonucleases/fisiologia , Previsões , Humanos , Proteínas/química , Proteínas/classificação , Proteínas/genética , Especificidade da Espécie
19.
Proc Natl Acad Sci U S A ; 110(45): E4195-202, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145433

RESUMO

Structural Genomics aims to elucidate protein structures to identify their functions. Unfortunately, the variation of just a few residues can be enough to alter activity or binding specificity and limit the functional resolution of annotations based on sequence and structure; in enzymes, substrates are especially difficult to predict. Here, large-scale controls and direct experiments show that the local similarity of five or six residues selected because they are evolutionarily important and on the protein surface can suffice to identify an enzyme activity and substrate. A motif of five residues predicted that a previously uncharacterized Silicibacter sp. protein was a carboxylesterase for short fatty acyl chains, similar to hormone-sensitive-lipase-like proteins that share less than 20% sequence identity. Assays and directed mutations confirmed this activity and showed that the motif was essential for catalysis and substrate specificity. We conclude that evolutionary and structural information may be combined on a Structural Genomics scale to create motifs of mixed catalytic and noncatalytic residues that identify enzyme activity and substrate specificity.


Assuntos
Biologia Computacional/métodos , Enzimas/metabolismo , Proteômica/métodos , Clonagem Molecular , Primers do DNA/genética , Evolução Molecular , Anotação de Sequência Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Am J Med Genet A ; 167A(11): 2795-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26238661

RESUMO

Klippel-Feil syndrome is a rare disorder represented by a subgroup of segmentation defects of the vertebrae and characterized by fusion of the cervical vertebrae, low posterior hairline, and short neck with limited motion. Both autosomal dominant and recessive inheritance patterns were reported in families with Klippel-Feil. Mutated genes for both dominant (GDF6 and GDF3) and recessive (MEOX1) forms of Klippel-Feil syndrome have been shown to be involved in somite development via transcription regulation and signaling pathways. Heterotaxy arises from defects in proteins that function in the development of left-right asymmetry of the developing embryo. We describe a consanguineous family with a male proband who presents with classical Klippel-Feil syndrome together with heterotaxy (situs inversus totalis). The present patient also had Sprengel's deformity, deformity of the sternum, and a solitary kidney. Using exome sequencing, we identified a homozygous frameshift mutation (c.299delT; p.L100fs) in RIPPLY2, a gene shown to play a crucial role in somitogenesis and participate in the Notch signaling pathway via negatively regulating Tbx6. Our data confirm RIPPLY2 as a novel gene for autosomal recessive Klippel-Feil syndrome, and in addition-from a mechanistic standpoint-suggest the possibility that mutations in RIPPLY2 could also lead to heterotaxy. © 2015 Wiley Periodicals, Inc.


Assuntos
Síndrome de Klippel-Feil/genética , Mutação/genética , Receptores Notch/genética , Transdução de Sinais/genética , Adolescente , Sequência de Bases , Feminino , Humanos , Síndrome de Klippel-Feil/diagnóstico por imagem , Masculino , Dados de Sequência Molecular , Linhagem , Radiografia , Coluna Vertebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA