Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ISME J ; 9(6): 1352-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25635642

RESUMO

Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.


Assuntos
Biomassa , Ecossistema , Cadeia Alimentar , Vírus , Animais , Bactérias/virologia , Carbono , Cianobactérias/metabolismo , Interações Microbianas , Oceanos e Mares , Microbiologia da Água , Zooplâncton/metabolismo
2.
J Phycol ; 45(4): 787-97, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27034207

RESUMO

Numerous microalgal species are infected by viruses that have the potential to control phytoplankton dynamics by reducing host populations, preventing bloom formation, or causing the collapse of blooms. Here we describe a virus infecting the diatom Chaetoceros cf. wighamii Brightw. from the Chesapeake Bay. To characterize the morphology and lytic cycle of this virus, we conducted a time-course experiment, sampling every 4 h over 72 h following viral inoculation. In vivo fluorescence began to decline 16 h after inoculation and was reduced to <19% of control cultures by the end of experiment. TEM confirmed infection within the first 8 h of inoculation, as indicated by the presence of virus-like particles (VLP) in the nuclei. VLP were present in two different arrangements: rod-like structures that appeared in cross-section as paracrystalline arrays of hexagonal-shaped profiles measuring 12 ± 2 nm in diameter and uniformly electron-dense hexagonal-shaped particles measuring ∼ 22-28 nm in diameter. Nuclei containing paracrystalline arrays were most prevalent early in the infection cycle, while cells containing VLP increased and then declined toward the end of the cycle. The proportion of nuclei containing both paracrystalline arrays and VLP remained relatively constant. This pattern suggests that rod-like paracrystalline arrays fragmented to produce icosahedral VLP. C. cf. wighamii nuclear inclusion virus (CwNIV) is characterized by a high burst size (averaged 26,400 viruses per infected cell) and fast generation time that could have ecological implications on C. cf. wighamii population control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA