RESUMO
The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.
Assuntos
Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Corpos de Nissl/metabolismo , RNA Mensageiro/metabolismo , Análise de Célula Única/métodos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Relógios Circadianos/genética , Colo/citologia , Colo/metabolismo , Retículo Endoplasmático Rugoso/genética , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/ultraestrutura , Células Epiteliais/metabolismo , Feminino , Predisposição Genética para Doença/genética , Humanos , Íleo/citologia , Íleo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Enteropatias/genética , Enteropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Corpos de Nissl/genética , Corpos de Nissl/ultraestrutura , RNA Mensageiro/genética , RNA-Seq , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Células Estromais/metabolismoRESUMO
Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.
Assuntos
Drosophila melanogaster , Homeostase , Organelas , Fosfatos , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Organelas/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Proteômica , Transferência Ressonante de Energia de Fluorescência , Lipidômica , Citosol/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismoRESUMO
Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness.
Assuntos
Ebolavirus/genética , Infecções por Filoviridae/virologia , Filoviridae/genética , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Teste de Complementação Genética , Genoma Viral , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Corpos de Inclusão/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Macrófagos/virologia , RNA Viral , Genética Reversa , Células Vero , Vírion/genéticaRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1010268.].
RESUMO
Aqueously soluble oligomers of amyloid-ß peptide may be the principal neurotoxic forms of amyloid-ß in Alzheimer's disease, initiating downstream events that include tau hyperphosphorylation, neuritic/synaptic injury, microgliosis and neuron loss. Synthetic oligomeric amyloid-ß has been studied extensively, but little is known about the biochemistry of natural oligomeric amyloid-ß in human brain, even though it is more potent than simple synthetic peptides and comprises truncated and modified amyloid-ß monomers. We hypothesized that monoclonal antibodies specific to neurotoxic oligomeric amyloid-ß could be used to isolate it for further study. Here we report a unique human monoclonal antibody (B24) raised against synthetic oligomeric amyloid-ß that potently prevents Alzheimer's disease brain oligomeric amyloid-ß-induced impairment of hippocampal long-term potentiation. B24 binds natural and synthetic oligomeric amyloid-ß and a subset of amyloid plaques, but only in the presence of Ca2+. The amyloid-ß N terminus is required for B24 binding. Hydroxyapatite chromatography revealed that natural oligomeric amyloid-ß is highly avid for Ca2+. We took advantage of the reversible Ca2+-dependence of B24 binding to perform non-denaturing immunoaffinity isolation of oligomeric amyloid-ß from Alzheimer's disease brain-soluble extracts. Unexpectedly, the immunopurified material contained amyloid fibrils visualized by electron microscopy and amenable to further structural characterization. B24-purified human oligomeric amyloid-ß inhibited mouse hippocampal long-term potentiation. These findings identify a calcium-dependent method for purifying bioactive brain oligomeric amyloid-ß, at least some of which appears fibrillar.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Humanos , Camundongos , Placa Amiloide/metabolismoRESUMO
BACKGROUND: Patient-reported symptoms of acute myocardial infarction (MI) may be affected by recall bias depending on when and where symptoms are assessed. AIM: The aim of this study was to gain an understanding of patients' symptom description in more detail before and within 24 hours after a confirmed MI diagnosis. METHODS: A convergent parallel mixed-methods design was used to examine symptoms described in calls between the tele-nurse and the patient compared with symptoms selected by the patient from a questionnaire less than 24 hours after hospital admission. Quantitative and qualitative data were analyzed separately and then merged into a final interpretation. RESULTS: Thirty patients (median age, 67.5 years; 20 men) were included. Chest pain was the most commonly reported symptom in questionnaires (24/30). Likewise, in 19 of 30 calls, chest pain was the first complaint mentioned, usually described together with the symptom onset. Expressions used to describe symptom quality were pain, pressure, discomfort, ache, cramp, tension, and soreness. Associated symptoms commonly described were pain or numbness in the arms, cold sweat, dyspnea, weakness, and nausea. Bodily sensations, such as feeling unwell or weak, were also described. Fear and tiredness were described in calls significantly less often than reported in questionnaires ( P = .01 and P = .02), whereas "other" symptoms were more often mentioned in calls compared with answers given in the questionnaire ( P = .02). Some symptoms expressed in the calls were not listed in the questionnaire, which expands the understanding of acute MI symptoms. The results showed no major inconsistencies between datasets. CONCLUSION: Patients' MI symptom descriptions in tele-calls and those reported in questionnaires after diagnosis are comparable and convergent.
Assuntos
Infarto do Miocárdio , Masculino , Humanos , Idoso , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Dor no Peito/diagnóstico , Dor no Peito/etiologia , Inquéritos e Questionários , Náusea , FadigaRESUMO
Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-ß (Aß) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aß neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aß deposition, ß-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aß molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aß deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aß microaggregates also contain αB-crystallin and scatter light, thus linking Aß pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aß lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aß accumulation and Aß amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aß production in brain and lens. Here we report identification of AD-related human Aß (hAß) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAß peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAß peptides, and develop hAß molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aß supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAß in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAß generation in the lens. In vitro studies showed that hAß promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aß pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aß pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aß pathology outside the brain and point to lens Aß as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.
Assuntos
Doença de Alzheimer , Catarata , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Catarata/patologia , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologiaRESUMO
Extracellular vesicles are highly transmissible and play critical roles in the propagation of tau pathology, although the underlying mechanism remains elusive. Here, for the first time, we comprehensively characterized the physicochemical structure and pathogenic function of human brain-derived extracellular vesicles isolated from Alzheimer's disease, prodromal Alzheimer's disease, and non-demented control cases. Alzheimer's disease extracellular vesicles were significantly enriched in epitope-specific tau oligomers in comparison to prodromal Alzheimer's disease or control extracellular vesicles as determined by dot blot and atomic force microscopy. Alzheimer's disease extracellular vesicles were more efficiently internalized by murine cortical neurons, as well as more efficient in transferring and misfolding tau, than prodromal Alzheimer's disease and control extracellular vesicles in vitro. Strikingly, the inoculation of Alzheimer's disease or prodromal Alzheimer's disease extracellular vesicles containing only 300 pg of tau into the outer molecular layer of the dentate gyrus of 18-month-old C57BL/6 mice resulted in the accumulation of abnormally phosphorylated tau throughout the hippocampus by 4.5 months, whereas inoculation of an equal amount of tau from control extracellular vesicles, isolated tau oligomers, or fibrils from the same Alzheimer's disease donor showed little tau pathology. Furthermore, Alzheimer's disease extracellular vesicles induced misfolding of endogenous tau in both oligomeric and sarkosyl-insoluble forms in the hippocampal region. Unexpectedly, phosphorylated tau was primarily accumulated in glutamic acid decarboxylase 67 (GAD67) GABAergic interneurons and, to a lesser extent, glutamate receptor 2/3-positive excitatory mossy cells, showing preferential extracellular vesicle-mediated GABAergic interneuronal tau propagation. Whole-cell patch clamp recordings of CA1 pyramidal cells showed significant reduction in the amplitude of spontaneous inhibitory post-synaptic currents. This was accompanied by reductions in c-fos+ GAD67+ neurons and GAD67+ neuronal puncta surrounding pyramidal neurons in the CA1 region, confirming reduced GABAergic transmission in this region. Our study posits a novel mechanism for the spread of tau in hippocampal GABAergic interneurons via brain-derived extracellular vesicles and their subsequent neuronal dysfunction.
Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Interneurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Vesículas Extracelulares/patologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Piramidais/metabolismo , Células Piramidais/patologiaRESUMO
Rationale: Mesenchymal stem/stromal cell (MSC)-small extracellular vesicle (MEx) treatment has shown promise in experimental models of neonatal lung injury. The molecular mechanisms by which MEx afford beneficial effects remain incompletely understood. Objectives: To investigate the therapeutic mechanism of action through assessment of MEx biodistribution and impact on immune cell phenotypic heterogeneity. Methods: MEx were isolated from the conditioned medium of human umbilical cord Wharton's jelly-derived MSCs. Newborn mice were exposed to hyperoxia (HYRX, 75% O2) from birth and returned to room air at Postnatal Day 14 (PN14). Mice received either a bolus intravenous MEx dose at PN4 or bone marrow-derived myeloid cells (BMDMy) pretreated with MEx. Animals were killed at PN4, PN7, PN14, or PN28 to characterize MEx biodistribution or for assessment of pulmonary parameters. The therapeutic role of MEx-educated BMDMy was determined in vitro and in vivo. Measurements and Main Results: MEx therapy ameliorated core histological features of HYRX-induced neonatal lung injury. Biodistribution and mass cytometry studies demonstrated that MEx localize in the lung and interact with myeloid cells. MEx restored the apportion of alveolar macrophages in the HYRX-injured lung and concomitantly suppressed inflammatory cytokine production. In vitro and ex vivo studies revealed that MEx promoted an immunosuppressive BMDMy phenotype. Functional assays demonstrated that the immunosuppressive actions of BMDMy are driven by phenotypically and epigenetically reprogrammed monocytes. Adoptive transfer of MEx-educated BMDMy, but not naive BMDMy, restored alveolar architecture, blunted fibrosis and pulmonary vascular remodeling, and improved exercise capacity. Conclusions: MEx ameliorate hyperoxia-induced neonatal lung injury though epigenetic and phenotypic reprogramming of myeloid cells.
Assuntos
Displasia Broncopulmonar/prevenção & controle , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Epigênese Genética , Vesículas Extracelulares/transplante , Hiperóxia/complicações , Células Mieloides/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Humanos , Camundongos , Fenótipo , Resultado do TratamentoRESUMO
Many studies report a higher risk for Parkinson's disease (PD) and younger age of onset in men. This, and the fact that the neuropathological process underlying PD symptoms may begin before menopause, suggests that estrogen-based hormone therapy could modify this higher risk in males. However, the effects of female sex or estrogen on α-synuclein (αS) homeostasis and related PD neuropathology remain unknown. Here, we used an αS tetramer-abrogating mouse model of PD (3K) that amplifies the familial E46K PD mutation to investigate the effects of female sex and brain-selective estrogen treatment on αS tetramerization and solubility, formation of vesicle-rich αS+ aggregates, dopaminergic and cortical fiber integrity, and associated motor deficits. In male 3K mice, the motor phenotype became apparent at â¼10 weeks and increased to age 6 months, paralleled by PD-like neuropathology, whereas 3K females showed a significant delay in onset. At 6 months, this beneficial phenotypic effect in 3K females was associated with a higher αS tetramer-to-monomer ratio and less decrease in dopaminergic and cortical fiber length and quantity. Brain-selective estrogen treatment in symptomatic 3K mice significantly increased the tetramer-to-monomer ratio, turnover by autophagy of aggregate-prone monomers, and neurite complexity of surviving DAergic and cortical neurons, in parallel with benefits in motor performance. Our findings support an upstream role for αS tetramer loss in PD phenotypes and a role for estrogen in mitigating PD-like neuropathology in vivo Brain-selective estrogen therapy may be useful in delaying or reducing PD symptoms in men and postmenopausal women.SIGNIFICANCE STATEMENT The mechanisms responsible for the male-to-female preponderance in Parkinson's disease (PD) are not well understood yet important for treatment efficacy. We previously showed that abrogating native α-synuclein (αS) tetramers produces a close PD model, including dopaminergic and cortical fiber loss and a progressive motor disorder responsive to l-DOPA. Here, we analyzed sex and use 10b-17ß-dihydroxyestra-1,4-dien-3-one treatment of symptomatic 3K males, and demonstrate that the beneficial effects of female sex on PD-like neuropathology can be reinstated by elevating estrogen in the male brain. The study provides evidence that 17ß-estradiol restores the tetramer-to-monomer ratio by autophagy turnover of excess αS monomers, vesicle and fiber integrity in brain regions critically involved in motor behavior. These data provide the basis for understanding sex differences in αS homeostasis and the development of therapeutic approaches to treating men and postmenopausal women with PD.
Assuntos
Encéfalo/metabolismo , Estradiol/farmacologia , Transtornos Parkinsonianos/metabolismo , Caracteres Sexuais , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Parkinsonianos/patologiaRESUMO
α-Synuclein (αS) forms round cytoplasmic inclusions in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence suggests a physiological function of αS in vesicle trafficking and release. In contrast to earlier tenets, recent work indicates that αS normally exists in cells in a dynamic equilibrium between monomers and tetramers/multimers. We engineered αS mutants incapable of multimerization, leading to excess monomers at vesicle membranes. By EM, such mutants induced prominent vesicle clustering, leading to round cytoplasmic inclusions. Immunogold labeling revealed abundant αS intimately associated with vesicles of varied size. Fluorescence microscopy with marker proteins showed that the αS-associated vesicles were of diverse endocytic and secretory origin. An αS '3K' mutant (E35K + E46K + E61K) that amplifies the PD/DLB-causing E46K mutation induced αS-rich vesicle clusters resembling the vesicle-rich areas of Lewy bodies, supporting pathogenic relevance. Mechanistically, E46K can increase αS vesicle binding via membrane-induced amphipathic helix formation, and '3K' further enhances this effect. Another engineered αS variant added hydrophobicity to the hydrophobic half of αS helices, thereby stabilizing αS-membrane interactions. Importantly, substituting charged for uncharged residues within the hydrophobic half of the stabilized helix not only reversed the strong membrane interaction of the multimer-abolishing αS variant but also restored multimerization and prevented the aberrant vesicle interactions. Thus, reversible αS amphipathic helix formation and dynamic multimerization regulate a normal function of αS at vesicles, and abrogating multimers has pathogenic consequences.
Assuntos
Corpos de Inclusão/metabolismo , Mutação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Humanos , Corpos de Inclusão/genética , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Estrutura Secundária de ProteínaRESUMO
Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress.IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved.
Assuntos
Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Citomegalovirus/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Liberação de Vírus/fisiologia , Proteínas do Capsídeo/genética , Núcleo Celular/genética , Núcleo Celular/virologia , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/virologia , Células HEK293 , Humanos , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genéticaRESUMO
The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001.
Assuntos
Traumatismos em Atletas/complicações , Concussão Encefálica/etiologia , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/etiologia , Tauopatias/etiologia , Lesões do Sistema Vascular/etiologia , Potenciais de Ação/fisiologia , Adolescente , Animais , Atletas , Encéfalo/patologia , Proteínas de Ligação ao Cálcio , Estudos de Coortes , Simulação por Computador , Traumatismos Craniocerebrais/diagnóstico por imagem , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/fisiologia , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Modelos Neurológicos , Córtex Pré-Frontal/fisiopatologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Adulto JovemRESUMO
RATIONALE: Mesenchymal stem/stromal cell (MSC) therapies have shown promise in preclinical models of pathologies relevant to newborn medicine, such as bronchopulmonary dysplasia (BPD). We have reported that the therapeutic capacity of MSCs is comprised in their secretome, and demonstrated that the therapeutic vectors are exosomes produced by MSCs (MSC-exos). OBJECTIVES: To assess efficacy of MSC-exo treatment in a preclinical model of BPD and to investigate mechanisms underlying MSC-exo therapeutic action. METHODS: Exosomes were isolated from media conditioned by human MSC cultures. Newborn mice were exposed to hyperoxia (HYRX; 75% O2), treated with exosomes on Postnatal Day (PN) 4 and returned to room air on PN7. Treated animals and appropriate controls were harvested on PN7, -14, or -42 for assessment of pulmonary parameters. MEASUREMENTS AND MAIN RESULTS: HYRX-exposed mice presented with pronounced alveolar simplification, fibrosis, and pulmonary vascular remodeling, which was effectively ameliorated by MSC-exo treatment. Pulmonary function tests and assessment of pulmonary hypertension showed functional improvements after MSC-exo treatment. Lung mRNA sequencing demonstrated that MSC-exo treatment induced pleiotropic effects on gene expression associated with HYRX-induced inflammation and immune responses. MSC-exos modulate the macrophage phenotype fulcrum, suppressing the proinflammatory "M1" state and augmenting an antiinflammatory "M2-like" state, both in vitro and in vivo. CONCLUSIONS: MSC-exo treatment blunts HYRX-associated inflammation and alters the hyperoxic lung transcriptome. This results in alleviation of HYRX-induced BPD, improvement of lung function, decrease in fibrosis and pulmonary vascular remodeling, and amelioration of pulmonary hypertension. The MSC-exo mechanism of action is associated with modulation of lung macrophage phenotype.
Assuntos
Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Fibrose Pulmonar/prevenção & controle , Animais , Animais Recém-Nascidos , Biópsia por Agulha , Modelos Animais de Doenças , Humanos , Hiperóxia , Imuno-Histoquímica , Imunomodulação , Macrófagos/imunologia , Camundongos , Fibrose Pulmonar/terapia , Distribuição Aleatória , Recuperação de Função Fisiológica , Testes de Função Respiratória , Sensibilidade e Especificidade , Resultado do TratamentoRESUMO
Despite the progress in the area of food safety, foodborne diseases still represent a massive challenge to the public health systems worldwide, mainly due to the substantial inefficiencies across the farm-to-fork continuum. Here, we report the development of a nano-carrier platform, for the targeted and precise delivery of antimicrobials for the inactivation of microorganisms on surfaces using Engineered Water Nanostructures (EWNS). An aqueous suspension of an active ingredient (AI) was used to synthesize iEWNS, with the 'i' denoting the AI used in their synthesis, using a combined electrospray and ionization process. The iEWNS possess unique, active-ingredient-dependent physicochemical properties: i) they are engineered to have a tunable size in the nanoscale; ii) they have excessive electric surface charge, and iii) they contain both the reactive oxygen species (ROS) formed due to the ionization of deionized (DI) water, and the AI used in their synthesis. Their charge can be used in combination with an electric field to target them onto a surface of interest. In this approach, a number of nature-inspired antimicrobials, such as H2O2, lysozyme, citric acid, and their combination, were used to synthesize a variety of iEWNS-based nano-sanitizers. It was demonstrated through foodborne-pathogen-inactivation experiments that due to the targeted and precise delivery, and synergistic effects of AI and ROS incorporated in the iEWNS structure, a pico- to nanogram-level dose of the AI delivered to the surface using this nano-carrier platform is capable of achieving 5-log reductions in minutes of exposure time. This aerosol-based, yet 'dry' intervention approach using iEWNS nano-carrier platform offers advantages over current 'wet' techniques that are prevalent commercially, which require grams of the AI to achieve similar inactivation, leading to increased chemical risks and chemical waste byproducts. Such a targeted nano-carrier approach has the potential to revolutionize the delivery of antimicrobials for sterilization in the food industry.
RESUMO
Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs-/-]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.
Assuntos
Dependovirus/genética , Exossomos/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células Ciliadas Auditivas Internas/metabolismo , Audição/genética , Animais , Células Cultivadas , Dependovirus/classificação , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Expressão Gênica , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Transdução Genética , TransgenesRESUMO
BACKGROUND: Engineered nanomaterials (ENMs) are increasingly added to foods to improve their quality, sensory appeal, safety and shelf-life. Human exposure to these ingested ENMs (iENMS) is inevitable, yet little is known of their hazards. To assess potential hazards, efficient in vitro methodologies are needed to evaluate particle biokinetics and toxicity. These methodologies must account for interactions and transformations of iENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Here we report the development and application of an integrated methodology consisting of three interconnected stages: 1) assessment of iENM-food interactions (food matrix effect) using model foods; 2) assessment of gastrointestinal transformations of the nano-enabled model foods using a three-stage GIT simulator; 3) assessment of iENMs biokinetics and cellular toxicity after exposure to simulated GIT conditions using a triculture cell model. As a case study, a model food (corn oil-in-water emulsion) was infused with Fe2O3 (Iron(III) oxide or ferric oxide) ENMs and processed using this three-stage integrated platform to study the impact of food matrix and GIT effects on nanoparticle biokinetics and cytotoxicity . METHODS: A corn oil in phosphate buffer emulsion was prepared using a high speed blender and high pressure homogenizer. Iron oxide ENM was dispersed in water by sonication and combined with the food model. The resulting nano-enabled food was passed through a three stage (mouth, stomach and small intestine) GIT simulator. Size distributions of nano-enabled food model and digestae at each stage were analyzed by DLS and laser diffraction. TEM and confocal imaging were used to assess morphology of digestae at each phase. Dissolution of Fe2O3 ENM along the GIT was assessed by ICP-MS analysis of supernatants and pellets following centrifugation of digestae. An in vitro transwell triculture epithelial model was used to assess biokinetics and toxicity of ingested Fe2O3 ENM. Translocation of Fe2O3 ENM was determined by ICP-MS analysis of cell lysates and basolateral compartment fluid over time. RESULTS: It was demonstrated that the interactions of iENMs with food and GIT components influenced nanoparticle fate and transport, biokinetics and toxicological profile. Large differences in particle size, charge, and morphology were observed in the model food with and without Fe2O3 and among digestae from different stages of the simulated GIT (mouth, stomach, and small intestine). Immunoflorescence and TEM imaging of the cell culture model revealed markers and morphology of small intestinal epithelium including enterocytes, goblet cells and M cells. Fe2O3 was not toxic at concentrations tested in the digesta. In biokinetics studies, translocation of Fe2O3 after 4 h was <1% and ~2% for digesta with and without serum, respectively, suggesting that use of serum proteins alters iENMs biokinetics and raises concerns about commonly-used approaches that neglect iENM - food-GIT interactions or dilute digestae in serum-containing media. CONCLUSIONS: We present a simple integrated methodology for studying the biokinetics and toxicology of iENMs, which takes into consideration nanoparticle-food-GIT interactions. The importance of food matrix and GIT effects on biointeractions was demonstrated, as well as the incorporation of these critical factors into a cellular toxicity screening model. Standardized food models still need to be developed and used to assess the effect of the food matrix effects on the fate and bioactivity of iENMs since commercial foods vary considerably in their compositions and structures.
Assuntos
Ingestão de Alimentos , Compostos Férricos/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Nanoestruturas/toxicidade , Nanotecnologia , Toxicologia/métodos , Administração Oral , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Digestão , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Trato Gastrointestinal/química , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Modelos Anatômicos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Reprodutibilidade dos Testes , Medição de Risco , Solubilidade , Propriedades de Superfície , Fatores de Tempo , ToxicocinéticaRESUMO
Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal-hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states.
Assuntos
Memória Episódica , Neocórtex/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Córtex Entorrinal/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Masculino , Memória de Longo Prazo/fisiologia , Camundongos , Microscopia Eletrônica de Transmissão , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neocórtex/ultraestrutura , Plasticidade Neuronal/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/ultraestrutura , TranscriptomaRESUMO
Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.
Assuntos
Ansiedade/psicologia , Quinase 5 Dependente de Ciclina/genética , Inibição Psicológica , Interneurônios/metabolismo , Transtornos da Memória/psicologia , Parvalbuminas/metabolismo , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Interneurônios/enzimologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Ácido gama-Aminobutírico/metabolismoRESUMO
Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera.