Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 68(6): 31-35, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36227681

RESUMO

It has been seen that, during COVID-19 outbreak lung cancer (LC) patients are noted as a high-risk population which make a more challenging to treatment of the LC patients. The active form of caspase-8 is involved in lung carcinogenesis in both humans and mice. In this study, the virtual screening was performed among 200 compounds retrieved from several resources for the searching of potent lead against Caspase 8 (Casp8). Cryptophycin 52 was found to have a strong inhibiting efficacy based on the free energy of binding with the active site of Casp8. The lowest binding energy was found to be -8.05 kcal/mole and was further analyzed for molecular dynamic simulation. Casp8 enzyme was determined to interact with cryptophycin 52 through twelve amino acid residues, specifically ARG260, SER316, GLY318, ASP319, THR337, VAL354, PHE355, PHE356, ILE357, GLN358, ALA359 and CYS360 along with six hydrogen bond particular, ILE357:N-UNK1: O7, UNK1: O14-PHE355:O, UNK1: C25-PHE355:O, UNK1: C35-THR337:O, UNK1: H65-HE355:O and UNK1: C25-PHE356. In addition, MD simulations for 50ns were performed for optimization, flexibility estimation and assessment of Casp8-cryptophycin 52 complex stability. This complex was seen as reasonably stable according to the RMSD, RMSF, and radius of gyration graph. Results obtained indicate cryptophycin 52 may be a lead compound with significant anti-cancer ability against Casp8. Further experimental work, however, is expected to support the compound's anti-cancer viewpoint.


Assuntos
Tratamento Farmacológico da COVID-19 , Neoplasias Pulmonares , Aminoácidos , Animais , Caspase 8 , Depsipeptídeos , Surtos de Doenças , Humanos , Lactamas , Lactonas , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
2.
Bioinformation ; 20(2): 91-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497067

RESUMO

Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis caused by RVFV in humans and livestock. Currently, there are no approved vaccines or antiviral therapies available. Additionally, in Saudi Arabia, there is a lack of a routine screening system to monitor RVFV in humans and animals which hinders to design and develop the preventive measures as well as the prediction of future outbreaks and the potential re-emergence of RVFV. Hence, we have performed the cloning, sequencing, and phylogenetic analysis, of nucleocapsid (N) protein gene. The sequence analysis showed high similarities with RVFV isolates reported from humans and animals. The highest similarity (99.5%) was observed with an isolate from Saudi Arabia (KU978775-Human) followed by 99.1% with four RVFV isolates (Human and Bovine) from other locations. A total of 51 nucleotides and 31 amino acid variations were observed throughout the N protein gene sequences. The phylogenetic relationship formed closed clusters with other isolates collected from Saudi Arabia. Thus, we report of the cloning, sequencing, and phylogenetic analysis of the RVFV-N protein gene from Saudi Arabia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA