Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 16(1): 474, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162101

RESUMO

BACKGROUND: Outdoor malaria transmission hinders malaria elimination efforts in the Amazon region and novel vector control tools are needed. Ivermectin mass drug administration (MDA) to humans kills wild Anopheles, targets outdoor-feeding vectors, and can suppress malaria parasite transmission. Laboratory investigations were performed to determine ivermectin susceptibility, sporontocidal effect and inhibition of time to re-feed for the primary Amazonian malaria vector, Anopheles darlingi. METHODS: To assess ivermectin susceptibility, various concentrations of ivermectin were mixed in human blood and fed to An. darlingi. Mosquito survival was monitored daily for 7 days and a non-linear mixed effects model with Probit analysis was used to calculate lethal concentrations of ivermectin that killed 50% (LC50), 25% (LC25) and 5% (LC5) of mosquitoes. To examine ivermectin sporonticidal effect, Plasmodium vivax blood samples were collected from malaria patients and offered to mosquitoes without or with ivermectin at the LC50, LC25 or LC5. To assess ivermectin inhibition of mosquito time to re-feed, concentrations of ivermectin predicted to occur after a single oral dose of 200 µg/kg ivermectin were fed to An. darlingi. Every day for 12 days thereafter, individual mosquitoes were given the opportunity to re-feed on a volunteer. Any mosquitoes that re-blood fed or died were removed from the study. RESULTS: Ivermectin significantly reduced An. darlingi survivorship: 7-day-LC50 = 43.2 ng/ml [37.5, 48.6], -LC25 = 27.8 ng/ml [20.4, 32.9] and -LC5 = 14.8 ng/ml [7.9, 20.2]. Ivermectin compound was sporontocidal to P. vivax in An. darlingi at the LC50 and LC25 concentrations reducing prevalence by 22.6 and 17.1%, respectively, but not at the LC5. Oocyst intensity was not altered at any concentration. Ivermectin significantly delayed time to re-feed at the 4-h (48.7 ng/ml) and 12-h (26.9 ng/ml) concentrations but not 36-h (10.6 ng/ml) or 60-h (6.3 ng/ml). CONCLUSIONS: Ivermectin is lethal to An. darlingi, modestly inhibits sporogony of P. vivax, and delays time to re-feed at concentrations found in humans up to 12 h post drug ingestion. The LC50 value suggests that a higher than standard dose (400-µg/kg) is necessary to target An. darlingi. These results suggest that ivermectin MDA has potential in the Amazon region to aid malaria elimination efforts.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Ivermectina/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Oocistos/efeitos dos fármacos , Peru , Plasmodium vivax/crescimento & desenvolvimento
2.
PLoS Negl Trop Dis ; 13(2): e0007116, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30753180

RESUMO

BACKGROUND: Transmission of dengue virus (DENV) from humans to mosquitoes represents a critical component of dengue epidemiology. Examinations of this process have generally been hampered by a lack of methods that adequately represent natural acquisition of DENV by mosquitoes from humans. In this study, we assessed artificial and natural blood feeding methods based on rates of DENV infection and dissemination within mosquitoes for use in a field-based epidemiological cohort study in Iquitos, Peru. METHODOLOGY/PRINCIPAL FINDINGS: Our study was implemented, stepwise, between 2011 and 2015. Participants who were 5 years and older with 5 or fewer days of fever were enrolled from ongoing clinic- and neighborhood-based studies on dengue in Iquitos. Wild type, laboratory-reared Aedes aegypti were fed directly on febrile individuals or on blood collected from participants that was either untreated or treated with EDTA. Mosquitoes were tested after approximately 14 days of extrinsic incubation for DENV infection and dissemination. A total of 58 participants, with viremias ranging from 1.3 × 10(2) to 2.9 × 10(6) focus-forming units per mL of serum, participated in one or more feeding methods. DENV infection and dissemination rates were not significantly different following direct and indirect-EDTA feeding; however, they were significantly lower for mosquitoes that fed indirectly on blood with no additive. Relative to direct feeding, infection rates showed greater variation following indirect-EDTA than indirect-no additive feeding. Dissemination rates were similar across all feeding methods. No differences were detected in DENV infection or dissemination rates in mosquitoes fed directly on participants with different dengue illness severity. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates the feasibility of using direct and indirect feeding methods for field-based studies on vector competence. Direct mosquito feeding is preferable in terms of logistical ease, biosecurity, and reliability.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/virologia , Mosquitos Vetores/virologia , Adolescente , Adulto , Aedes/fisiologia , Idoso , Animais , Dengue/transmissão , Comportamento Alimentar , Feminino , Humanos , Consentimento Livre e Esclarecido , Mordeduras e Picadas de Insetos , Pessoa de Meia-Idade , Mosquitos Vetores/fisiologia , Adulto Jovem
3.
PLoS Negl Trop Dis ; 12(2): e0006221, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444080

RESUMO

BACKGROUND: The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. METHODS: To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 µg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. RESULTS: IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. CONCLUSION: In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Ivermectina/farmacologia , Malária/transmissão , Plasmodium vivax/efeitos dos fármacos , Animais , Anopheles/parasitologia , Brasil , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Humanos , Insetos Vetores/parasitologia , Ivermectina/administração & dosagem , Ivermectina/sangue , Ivermectina/metabolismo , Malária/sangue , Oocistos/efeitos dos fármacos , Oocistos/patogenicidade , Primaquina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA