Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Ann Bot ; 134(1): 101-116, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38488820

RESUMO

BACKGROUND AND AIMS: Intra- and transgenerational plasticity may provide substantial phenotypic variation to cope with environmental change. Since assessing the unique contribution of the maternal environment to the offspring phenotype is challenging in perennial, outcrossing plants, little is known about the evolutionary and ecological implications of transgenerational plasticity and its persistence over the life cycle in these species. We evaluated how intra- and transgenerational plasticity interplay to shape the adaptive responses to drought in two perennial Mediterranean shrubs. METHODS: We used a novel common garden approach that reduced within-family genetic variation in both the maternal and offspring generations by growing the same maternal individual in two contrasting watering environments, well-watered and drought, in consecutive years. We then assessed phenotypic differences at the reproductive stage between offspring reciprocally grown in the same environments. KEY RESULTS: Maternal drought had an effect on offspring performance only in Helianthemum squamatum. Offspring of drought-stressed plants showed more inflorescences, less sclerophyllous leaves and higher growth rates in both watering conditions, and heavier seeds under drought, than offspring of well-watered maternal plants. Maternal drought also induced similar plasticity patterns across maternal families, showing a general increase in seed mass in response to offspring drought, a pattern not observed in the offspring of well-watered plants. In contrast, both species expressed immediate adaptive plasticity, and the magnitude of intragenerational plasticity was larger than the transgenerational plastic responses. CONCLUSIONS: Our results highlight that adaptive effects associated with maternal drought can persist beyond the seedling stage and provide evidence of species-level variation in the expression of transgenerational plasticity. Such differences between co-occurring Mediterranean species in the prevalence of this form of non-genetic inheritance may result in differential vulnerability to climate change.


Assuntos
Adaptação Fisiológica , Secas , Adaptação Fisiológica/genética , Fenótipo , Região do Mediterrâneo , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Variação Genética
2.
Ann Bot ; 131(7): 1107-1119, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976581

RESUMO

BACKGROUND AND AIMS: Arbuscular mycorrhizal (AM) fungi enhance the uptake of water and minerals by the plant hosts, alleviating plant stress. Therefore, AM fungal-plant interactions are particularly important in drylands and other stressful ecosystems. We aimed to determine the combined and independent effects of above- and below-ground plant community attributes (i.e. diversity and composition), soil heterogeneity and spatial covariates on the spatial structure of the AM fungal communities in a semiarid Mediterranean scrubland. Furthermore, we evaluated how the phylogenetic relatedness of both plants and AM fungi shapes these symbiotic relationships. METHODS: We characterized the composition and diversity of AM fungal and plant communities in a dry Mediterranean scrubland taxonomically and phylogenetically, using DNA metabarcoding and a spatially explicit sampling design at the plant neighbourhood scale. KEY RESULTS: The above- and below-ground plant community attributes, soil physicochemical properties and spatial variables explained unique fractions of AM fungal diversity and composition. Mainly, variations in plant composition affected the AM fungal composition and diversity. Our results also showed that particular AM fungal taxa tended to be associated with closely related plant species, suggesting the existence of a phylogenetic signal. Although soil texture, fertility and pH affected AM fungal community assembly, spatial factors had a greater influence on AM fungal community composition and diversity than soil physicochemical properties. CONCLUSIONS: Our results highlight that the more easily accessible above-ground vegetation is a reliable indicator of the linkages between plant roots and AM fungi. We also emphasize the importance of soil physicochemical properties in addition to below-ground plant information, while accounting for the phylogenetic relationships of both plants and fungi, because these factors improve our ability to predict the relationships between AM fungal and plant communities.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Filogenia , Solo/química , Simbiose , Raízes de Plantas , Plantas/microbiologia , Microbiologia do Solo , Fungos
3.
New Phytol ; 235(6): 2406-2423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704043

RESUMO

The analysis of plant elemental composition and the underlying factors affecting its variation are a current hot topic in ecology. Ecological adaptation to atypical soils may shift plant elemental composition. However, no previous studies have evaluated its relevance against other factors such as phylogeny, climate or individual soil conditions. We evaluated the effect of the phylogeny, environment (climate, soil), and affinity to gypsum soils on the elemental composition of 83 taxa typical of Iberian gypsum ecosystems. We used a new statistical procedure (multiple phylogenetic variance decomposition, MPVD) to decompose total explained variance by different factors across all nodes in the phylogenetic tree of target species (covering 120 million years of Angiosperm evolution). Our results highlight the relevance of phylogeny on the elemental composition of plants both at early (with the development of key preadaptive traits) and recent divergence times (diversification of the Iberian gypsum flora concurrent with Iberian gypsum deposit accumulation). Despite the predominant phylogenetic effect, plant adaptation to gypsum soils had a strong impact on the elemental composition of plants, particularly on sulphur concentrations, while climate and soil effects were smaller. Accordingly, we detected a convergent evolution of gypsum specialists from different lineages on increased sulphur and magnesium foliar concentrations.


Assuntos
Sulfato de Cálcio , Ecossistema , Filogenia , Plantas/genética , Solo , Enxofre
4.
Ecol Appl ; 32(5): e2599, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343001

RESUMO

Biocrusts are major contributors to dryland diversity, functioning, and services. However, little is known about how habitat degradation will impact multiple facets of biocrust diversity and measurable functional traits. We evaluated changes in taxonomic, functional, and phylogenetic diversity of biocrust-forming lichens along a habitat degradation gradient related to the presence of linear infrastructure (i.e., a road) and a profound agricultural driven transformation. To do so, we selected 50 remnants of a Mediterranean shrubland. We considered several surrogates of habitat quality and causal disturbance on the various diversity facets of biocrusts by using structural equation modeling, hypothesizing that habitat degradation primarily affects functional diversity, which in turn regulates changes in taxonomic and phylogenetic diversities, and also that taxonomic and phylogenetic diversities are coupled. Fragment connectivity, distance to linear infrastructure (i.e., a road) and, particularly, soil fertility (i.e., soil P concentration), had mostly negative effects on biocrust functional diversity, which in turn affected both taxonomic and phylogenetic diversities. However, we found no direct effects of habitat degradation variables on the taxonomic and phylogenetic diversities. We also found that increases in phylogenetic diversity had a positive effect on taxonomic diversity along the habitat degradation gradient. Our results indicate that functional diversity of biocrusts is strongly affected by habitat degradation, which may profoundly alter their contribution to ecosystem functioning and services. Furthermore, functional diversity regulates the response of biocrust taxonomic and phylogenetic diversity to habitat degradation. These findings indicate that habitat degradation alters and simplifies the diversity of functional traits of biocrust-forming lichens, leading to biodiversity loss, with important consequences for the conservation of global drylands biodiversity.


Assuntos
Ecossistema , Líquens , Filogenia , Solo/química , Microbiologia do Solo
5.
New Phytol ; 231(6): 2359-2370, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097309

RESUMO

Understanding constraints to phenotypic plasticity is key given its role on the response of organisms to environmental change. It has been suggested that phenotypic integration, the structure of trait covariation, could limit trait plasticity. However, the relationship between plasticity and integration is far from resolved. Using a database of functional plasticity to drought of a Mediterranean shrub that included 20 ecophysiological traits, we assessed environmentally-induced changes in phenotypic integration and whether integration constrained the expression of plasticity, accounting for the within-environment phenotypic variation of traits. Furthermore, we provide the first test of the association between differential trait plasticity and trait integration across an optimum and a stressful environment. Phenotypic plasticity was positively associated with phenotypic integration in both environments, but this relationship was lost when phenotypic variation was considered. The similarity in the plastic response of two traits predicted their integration across environments, with integrated traits having more similar plasticity. Such variation in the plasticity of traits partly explained the lower phenotypic integration found in the stressful environment. We found no evidence that integration may constitute an internal constraint to plasticity. Rather, we present the first empirical demonstration that differences in plastic responses may involve a major reorganization of the relationships among traits, and challenge the notion that stress generally induces a tighter phenotype.


Assuntos
Adaptação Fisiológica , Secas , Fenótipo
6.
Am J Bot ; 108(3): 443-460, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33740271

RESUMO

PREMISE: Gypsum soils in the Mediterranean Basin house large numbers of edaphic specialists that are adapted to stressful environments. The evolutionary history and standing genetic variation of these taxa have been influenced by the geological and paleoclimatic complexity of this area and the long-standing effect of human activities. However, little is known about the origin of Mediterranean gypsophiles and the factors affecting their genetic diversity and population structure. METHODS: Using phylogenetic and phylogeographic approaches based on microsatellites and sequence data from nuclear and chloroplast regions, we evaluated the divergence time, genetic diversity, and population structure of 27 different populations of the widespread Iberian gypsophile Lepidium subulatum throughout its entire geographic range. RESULTS: Lepidium subulatum diverged from its nearest relatives ~3 million years ago, and ITS and psbA/matK trees supported the monophyly of the species. These results suggest that both geological and climatic changes in the region around the Plio-Pleistocene promoted its origin, compared to other evolutionary processes. We found high genetic diversity in both nuclear and chloroplast markers, but a greater population structure in the chloroplast data. These results suggest that while seed dispersal is limited, pollen flow may be favored by the presence of numerous habitat patches that enhance the movement of pollinators. CONCLUSIONS: Despite being an edaphic endemic, L. subulatum possesses high genetic diversity probably related to its relatively old age and high population sizes across its range. Our study highlights the value of using different markers to fully understand the phylogeographic history of plant species.


Assuntos
Sulfato de Cálcio , DNA de Cloroplastos , DNA de Cloroplastos/genética , Variação Genética , Haplótipos , Filogenia , Filogeografia
7.
New Phytol ; 228(3): 1070-1082, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32557640

RESUMO

Roots are assumed to play a major role in structuring soil microbial communities, but most studies exploring the relationships between microbes and plants at the community level have only used aboveground plant distribution as a proxy. However, a decoupling between belowground and aboveground plant components may occur due to differential spreading of plant canopies and root systems. Thus, soil microbe-plant links are not completely understood. Using a combination of DNA metabarcoding and spatially explicit sampling at the plant neighbourhood scale, we assessed the influence of the plant root community on soil bacterial and fungal diversity (species richness, composition and ß-diversity) in a dry Mediterranean scrubland. We found that root composition and biomass, but not richness, predict unique fractions of variation in microbial richness and composition. Moreover, bacterial ß-diversity was related to root ß-diversity, while fungal ß-diversity was related to aboveground plant ß-diversity, suggesting that plants differently influence both microbial groups. Our study highlights the role of plant distribution both belowground and aboveground, soil properties and other spatially structured factors in explaining the heterogeneity in soil microbial diversity. These results also show that incorporating data on both plant community compartments will further our understanding of the relationships between soil microbial and plant communities.


Assuntos
Biodiversidade , Solo , Bactérias/genética , Fungos , Raízes de Plantas , Microbiologia do Solo
8.
Ann Bot ; 125(6): 969-980, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32016374

RESUMO

BACKGROUND AND AIMS: Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum. METHODS: We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions. We characterized fitness, life history and functional plasticity in response to two contrasting treatments that realistically reflect soil moisture variation in gypsum habitats. We also assessed neutral genetic variation and population structure using microsatellite markers. KEY RESULTS: In response to water stress, plants from all populations flowered earlier, increased allocation to root tissues and advanced leaf senescence, consistent with a drought escape strategy. Remarkably, these probably adaptive responses were common to all populations, as shown by the lack of population × environment interaction for almost all functional traits. This generally common pattern of response was consistent with substantial neutral genetic variation and large differences in population trait means. However, such population-level trait variation was not related to climatic conditions at the sites of origin. CONCLUSIONS: Our results show that, rather than ecotypes specialized to local climatic conditions, these populations are composed of highly plastic, general-purpose genotypes in relation to climatic heterogeneity. The strikingly similar patterns of plasticity among populations, despite substantial site of origin differences in climate, suggest past selection on a common norm of reaction due to similarly high levels of variation within sites. It is thus likely that plasticity will have a prevalent role in the response of this soil specialist to further environmental change.


Assuntos
Adaptação Fisiológica , Solo , Ecossistema , Fenótipo , Chuva
9.
Physiol Plant ; 165(2): 403-412, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30536685

RESUMO

High-mountain areas provide excellent opportunities to study the effects of combined abiotic stresses on plant physiology given their variety of steep ecological gradients, low anthropogenic disturbance and remarkable levels of taxonomic diversity. Efficient photoprotective and antioxidant scavenging mechanisms are vital for survival in high-mountain plants, having its altitudinal and seasonal variations determined by environmental or ontogenetic factors such as the decrease in mean temperatures and water availability. A number of stress indicators have been described in order to rapidly assess plant fitness in high-mountain environments. For instance, carbon isotope (δ13 C) and proline content as drought and temperature stress indicators, because of their link to water-use efficiency and osmotic adjustment; photosynthetic pigments, related to phenology, nutrient status, light and temperature stress; and non-structural carbohydrate accumulation in response to mild or brief drought conditions. The present review unveils the wide research opportunities available for the study of adaptive responses in high-mountain plants via stress indicators, and calls attention to the substantial knowledge gap existing between alpine zones and other mountainous regions, such as Mediterranean high-mountains. The aim is to grant a more holistic understanding of the physiological mechanisms driving plant life in high altitudes and improve the predictions of the effects of changing environments in these species and across ecological scales.


Assuntos
Ecossistema , Plantas/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Região do Mediterrâneo , Estações do Ano
10.
Nature ; 502(7473): 672-6, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24172979

RESUMO

The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.


Assuntos
Clima Desértico , Dessecação , Ecossistema , Geografia , Solo/química , Silicatos de Alumínio/análise , Biomassa , Carbono/análise , Carbono/metabolismo , Ciclo do Carbono , Argila , Mudança Climática , Modelos Teóricos , Nitrogênio/análise , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/análise , Fósforo/metabolismo , Plantas/metabolismo
11.
Ann Bot ; 121(2): 335-344, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29300824

RESUMO

Background and Aims: In Mediterranean annual plants, germination mainly occurs during the autumn and only those seedlings that survive winter freezing can flower and produce seedlings in spring. Surprisingly, the effect of freezing events as an abiotic determinant of these communities remains unexplored. The present study aimed to investigate how freezing events affect annual Mediterranean communities and whether their functional structure as related to freezing resistance is linked to the main biotic and abiotic determinants of these communities. Methods: In 120 plots located on a semi-arid Mediterranean steppe (Spain), the community functional structure related to the lethal temperature causing 50 % frost damage (LT50 trait) in seedlings was estimated and summarized as the community-weighted mean (CWM-LT50) and its functional diversity (FD-LT50). Plots were stratified according to distance to rabbit shelters and latrines as a proxy for rabbit density, proximity to Stipa tenacissima and spring water availability, where annual species abundance was recorded in all plots over three consecutive years. Key Results: Annual species were able to resist a threshold temperature of -4 °C and most had LT50 values around the absolute minimum temperature (-9.5 °C) in the three years. Higher rabbit densities led to lower CWM-LT50 and higher FD-LT50 values. Plots close to Stipa tussocks had higher CWM-LT50 values whereas water availability had no effects. Conclusions: High freezing resistance was extended among winter annual species, suggesting the presence of an association between historical environmental filtering and low winter temperatures. However, the community functional structure related to freezing resistance remained variable among scenarios with differences in herbivory pressure and distance to perennial vegetation. The trends observed indicate that traits that allow plants to deal with herbivory may also promote freezing resistance, and that tussocks can act as nurses via microclimatic amelioration of harsher winter conditions.


Assuntos
Magnoliopsida/fisiologia , Animais , Ecossistema , Congelamento , Herbivoria , Região do Mediterrâneo , Poaceae/fisiologia , Coelhos , Estações do Ano , Plântula/fisiologia
12.
Ann Bot ; 120(1): 135-146, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510631

RESUMO

Background and Aims: Local adaptation and phenotypic plasticity are considered key mechanisms for coping with climate warming, especially for plant species that inhabit island-like habitats. In Spain a complete guild of edaphic specialists, most of them threatened, occurs in gypsum outcrops, but how these species will respond to climate change has received little attention. Methods: A reciprocal sowing experiment was performed to determine the extent of local adaptation and phenotypic plasticity in five gypsophytes with contrasting distributions along a climate gradient. Germination, seedling growth and survival were recorded during a 4-year period. Key Results: Plants responded plastically according to their positions along the regional climate gradient, as well as locally between matched locations. All species exhibited highly plastic responses and stress-tolerant behaviours, especially in terms of seedling survival during summer drought. However, no evidence of local adaptation was detected in any of the locations, where local individuals never performed better than those from other sites. In some sites, both germination and seedling recruitment were higher irrespective of parent plant origin. Conclusions: The lack of local adaptation to drought displayed at the regeneration stage indicates limited capacity for in situ genetic response to new climate scenarios. Nevertheless, a plastic response along the climatic gradient does suggest a wider species-level capacity to enable these edaphic specialists to cope with increasing aridity over coming decades.


Assuntos
Adaptação Fisiológica , Sulfato de Cálcio , Mudança Climática , Fenômenos Fisiológicos Vegetais , Secas , Germinação , Plântula/fisiologia , Espanha
13.
Ann Bot ; 117(7): 1221-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27085181

RESUMO

BACKGROUND AND AIMS: Many studies have analysed the mechanisms that determine plant coexistence in standing vegetation, but the determinants of soil seed bank species assemblies have rarely been studied. In gypsum soil communities, aerial vegetation and seed banks are tightly connected in space and time, but the mechanisms involved in their organization may differ. The aim of this study is to understand the relative importance of biotic and abiotic factors controlling soil seed bank composition and structure. METHODS: Persistent and complete (i.e. persistent plus transient) soil seed banks were investigated at two spatial scales in a very species-rich semi-arid community dominated by annuals. A water addition treatment equivalent to 50 % annual increase in average precipitation (abiotic factor) was applied for two consecutive years, and the relationships of the soil seed bank to the biological soil crust (BSC), above-ground vegetation and the presence of Stipa tenacissima tussocks (biotic factors) were simultaneously evaluated. KEY RESULTS: As expected, the standing vegetation was tightly related to seed abundance, species richness and composition in both seed banks. Remarkably, BSC cover was linked to a decrease in seed abundance and species richness in the persistent seed bank, and it even determined complete seed bank composition at the fine spatial scale. However, this effect disappeared at coarser scales, probably because of the high spatial heterogeneity induced by BSCs. In contrast to findings on standing vegetation, Stipa and the irrigation treatment for two consecutive years had no effect on soil seed banks. CONCLUSIONS: Soil seed bank assemblies in our semi-arid plant community were the result of above-ground vegetation dynamics and of the direct filtering processes on seed fate operated by the spatially heterogeneous BSCs. Cover of BSCs was negatively correlated with seed abundance and species richness, and affected seed species composition in the soil. Changes in species composition and enrichment when the BSC cover is low suggest that BSCs promote a fine scale niche differentiation in the soil seed bank and thereby potentially enhance species coexistence and high species diversity in these communities.


Assuntos
Banco de Sementes , Solo , Irrigação Agrícola , Sulfato de Cálcio , Poaceae/fisiologia , Sementes/fisiologia , Solo/química , Espanha
14.
Oecologia ; 180(4): 919-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26897604

RESUMO

Functional traits are the center of recent attempts to unify key ecological theories on species coexistence and assembling in populations and communities. While the plethora of studies on the role of functional traits to explain patterns and dynamics of communities has rendered a complex picture due to the idiosyncrasies of each study system and approach, there is increasing evidence on their actual relevance when aspects such as different spatial scales, intraspecific variability and demography are considered.


Assuntos
Ecossistema , Plantas , Ecologia , Fenótipo
15.
Oecologia ; 180(4): 975-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26820565

RESUMO

Evaluating community assembly through the use of functional traits is a promising tool for testing predictions arising from Niche and Coexistence theories. Although interactions among neighboring species and their inter-specific differences are known drivers of coexistence with a strong spatial signal, assessing the role of individual species on the functional structure of the community at different spatial scales remains a challenge. Here, we ask whether individual species exert a measurable effect on the spatial organization of different functional traits in local assemblages. We first propose and compute two functions that describe different aspects of functional trait organization around individual species at multiple scales: individual weighted mean area relationship and individual functional diversity area relationship. Secondly, we develop a conceptual model on the relationship and simultaneous variation of these two metrics, providing five alternative scenarios in response to the ability of some target species to modify its neighbor environment and the possible assembly mechanisms involved. Our results show that some species influence the spatial structure of specific functional traits, but their effects were always restricted to the finest spatial scales. In the basis of our conceptual model, the observed patterns point to two main mechanisms driving the functional structure of the community at the fine scale, "biotic" filtering meditated by individual species and resource partitioning driven by indirect facilitation rather than by competitive mechanisms.


Assuntos
Meio Ambiente , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Biodiversidade , Fenótipo
16.
Oecologia ; 177(1): 159-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25354713

RESUMO

In harsh environments facilitation alleviates biotic and abiotic constraints on tree recruitment. Under ongoing drier climate change, we expect facilitation to increase as a driver of coexistence. However, this might not hold under extreme abiotic stress and when the outcome depends on the interaction with other drivers such as altered herbivore pressure due to land use change. We performed a field water-manipulation experiment to quantify the importance of facilitation in two coexisting Mediterranean trees (dominant Juniperus thurifera and coexisting Quercus ilex subsp. ballota) under a climate change scenario. Shifts in canopy dominance favouring Q. ilex could be based on the extension of heterospecific facilitation to the detriment of conspecific alleviation. We found that saplings of both species transplanted under the canopy of nurse trees had greater survival probability, growth and photochemical efficiency. Intra- and interspecific facilitation mechanisms differed: alleviation of abiotic stress benefited both species during summer and J. thurifera during winter, whereas browsing protection was relevant only for Q. ilex. Facilitation was greater under the dry treatment only for Q. ilex, which partially agreed with the predictions of the stress gradient hypothesis. We conclude that present rainfall availability limits neither J. thurifera nor Q. ilex establishment. Nevertheless, under current global change scenarios, imposing increasing abiotic stress together with altered herbivore browsing, nurse trees could differentially facilitate the establishment of Q. ilex due to species-specific traits, i.e. palatability; drought, heat and cold tolerance, underlying species differences in the facilitation mechanisms and eventually triggering a change from pure juniper woodlands to mixed formations.


Assuntos
Mudança Climática , Secas , Ecossistema , Herbivoria , Juniperus , Quercus , Estresse Fisiológico , Ecologia , Região do Mediterrâneo , Fenótipo , Probabilidade , Chuva , Estações do Ano , Especificidade da Espécie , Temperatura , Árvores , Água
17.
Ecol Lett ; 17(2): 193-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238015

RESUMO

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Plantas , Aclimatação , Altitude , Ásia , Europa (Continente) , Modelos Lineares , Nova Zelândia , América do Norte , América do Sul
18.
New Phytol ; 204(1): 140-148, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24954264

RESUMO

Two-phase plant communities with an engineer conforming conspicuous patches and affecting the performance and patterns of coexisting species are the norm under stressful conditions. To unveil the mechanisms governing coexistence in these communities at multiple spatial scales, we have developed a new point-raster approach of spatial pattern analysis, which was applied to a Mediterranean high mountain grassland to show how Festuca curvifolia patches affect the local distribution of coexisting species. We recorded 22 111 individuals of 17 plant perennial species. Most coexisting species were negatively associated with F. curvifolia clumps. Nevertheless, bivariate nearest-neighbor analyses revealed that the majority of coexisting species were confined at relatively short distances from F. curvifolia borders (between 0-2 cm and up to 8 cm in some cases). Our study suggests the existence of a fine-scale effect of F. curvifolia for most species promoting coexistence through a mechanism we call 'facilitation in the halo'. Most coexisting species are displaced to an interphase area between patches, where two opposite forces reach equilibrium: attenuated severe conditions by proximity to the F. curvifolia canopy (nutrient-rich islands) and competitive exclusion mitigated by avoiding direct contact with F. curvifolia.


Assuntos
Ecossistema , Festuca/fisiologia , Fenômenos Fisiológicos Vegetais , Biodiversidade , Região do Mediterrâneo , Espanha , Análise Espacial
19.
Oecologia ; 176(4): 997-1007, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194350

RESUMO

Understanding community dynamics during early life stages of trees is critical for the prediction of future species composition. In Mediterranean forests drought is a major constraint for regeneration, but likely not the only factor determining the observed spatial patterns. We carried out a sowing experiment aimed at identifying main filters during seed-seedling transition. Specifically, we studied seed fate (predation, fungi infection, emergence) and subsequent seedling performance (mortality during the first summer and overall recruitment after 2 years) of four co-occurring Mediterranean tree species (Quercus ilex, Quercus faginea, Juniperus thurifera, Pinus nigra). We related these processes to the dominant species composition, microhabitat heterogeneity, herb cover and seed mass. The identity of the dominant species in the forest canopy was more important for recruitment than the forest canopy being dominated by conspecific vs. heterospecific species. The patterns we found suggest that biotic interactions such as facilitation (lower mortality under the canopies) and herb competition (during emergence of J. thurifera) are relevant during recruitment. Moreover, our results pointed to ontogenetic conflicts regarding the seed mass of Q. faginea and to density-dependent seed mortality for Q. ilex, rarely described in Mediterranean ecosystems. We propose that our study species experience population growth in forests dominated by heterospecifics where the recruitment success depends on habitat heterogeneity and on moderated biotic and abiotic stresses created by each species. Our results reveal patterns and mechanisms involved in recruitment constraints that add complexity to the well-known drought-related processes in Mediterranean ecosystems.


Assuntos
Florestas , Juniperus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Secas , Ecologia , Ecossistema , Região do Mediterrâneo , Dinâmica Populacional
20.
Arch Cardiol Mex ; 94(3): 349-355, 2024 04 04.
Artigo em Espanhol | MEDLINE | ID: mdl-38574393

RESUMO

Objective: To evaluate the efficacy of a cardiac rehabilitation program (CRP) in improving adherence to non-pharmacological secondary prevention in patients with acute coronary syndrome (ACS). Method: Retrospective study of patients with ACS referred to CRP in a tertiary hospital from 2018 to 2021. Pre-post differences in adherence to physical activity, Mediterranean diet, smoking, and motivation to change were analyzed. Age, sex, and baseline motivation were analyzed in predicting change in adherence. Results: 418 patients were included. At the end of the CRP, the adherence to the mediterranean diet increased (p < 0.05; d = 0.83), frequency of physical activity increased by 2.16 (p < 0.05), and motivation to change remained constant (p = 0.94). Both women and men improved their adherence to the mediterranean diet. Both sexes performed more physical activity at the end of the CRP (1.89 times more in men and 4 times more in women; p < 0.05). An association was found between initial motivation and greater changes in adherence to the mediterranean diet (p < 0.05). An inversely proportional difference was observed between age and adherence to the mediterranean diet (p < 0.05). Conclusions: The CRP, in our hospital environment, has an effect of improving adherence to the mediterranean diet and physical exercise in patients with ACS. The change in adherence to the diet increases as the motivation to change the baseline increases, and age is inversely related to the change in adherence.


Objetivo: Evaluar la eficacia de un programa de rehabilitación cardiaca (PRC) sobre la mejora de la adherencia a las medidas de prevención secundaria no farmacológicas en pacientes con síndrome coronario agudo (SCA). Método: Estudio retrospectivo con pacientes con SCA derivados a PRC en un hospital terciario de 2018 a 2021. Se analizaron diferencias pre-post de adherencia a actividad física, dieta mediterránea, tabaquismo y motivación al cambio. Se analizaron la edad, el sexo y la motivación basal en la predicción del cambio de adherencia. Resultados: Se incluyeron 418 pacientes. Al final del PRC aumentó la adherencia a la dieta mediterránea (p < 0.05; d = 0.83), la frecuencia de actividad física aumentó 2,16 (p < 0.05) y la motivación al cambio se mantuvo constante (p = 0.94). Tanto las mujeres como los hombres mejoraron la adherencia a la dieta mediterránea. Ambos sexos realizaron más ejercicio físico al final del PRC (1.89 veces más los hombres y 4 las mujeres; p < 0.05). Se encontró una asociación entre motivación inicial y mayores cambios en la adherencia a la dieta mediterránea (p < 0.05). Se observó una diferencia inversamente proporcional entre la edad y la adherencia a la dieta mediterránea (p < 0.05). Conclusiones: El PRC, en nuestro medio hospitalario, mejora la adherencia a la dieta mediterránea y al ejercicio físico en los pacientes con SCA. La adherencia a la dieta mediterránea aumenta a medida que lo hace la motivación al cambio basal, mientras que la edad está inversamente relacionada con el cambio de adherencia.


Assuntos
Síndrome Coronariana Aguda , Reabilitação Cardíaca , Dieta Mediterrânea , Exercício Físico , Motivação , Cooperação do Paciente , Humanos , Síndrome Coronariana Aguda/reabilitação , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Cooperação do Paciente/estatística & dados numéricos , Reabilitação Cardíaca/métodos , Idoso , Prevenção Secundária/métodos , Fatores Etários , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA