Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(9): 250, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439894

RESUMO

Ruminants enable the conversion of indigestible plant material into animal consumables, including dairy products, meat, and valuable fibers. Microbiome research is gaining popularity in livestock species because it aids in the knowledge of illnesses and efficiency processes in animals. In this study, we use WGS metagenomic data to thoroughly characterize the ruminal ecosystem of cows to infer positive and negative livestock traits determined by the microbiome. The rumen of cows from Argentina were described by combining different gene biomarkers, pathways composition and taxonomic information. Taxonomic characterization indicated that the two major phyla were Bacteroidetes and Firmicutes; in third place, Proteobacteria was highly represented followed by Actinobacteria; Prevotella, and Bacteroides were the most abundant genera. Functional profiling of carbohydrate-active enzymes indicated that members of the Glycoside Hydrolase (GH) class accounted for 52.2 to 55.6% of the total CAZymes detected, among them the most abundant were the oligosaccharide degrading enzymes. The diversity of GH families found suggested efficient hydrolysis of complex biomass. Genes of multidrug, macrolides, polymyxins, beta-lactams, rifamycins, tetracyclines, and bacitracin resistance were found below 0.12% of relative abundance. Furthermore, the clustering analysis of genera and genes that correlated to methane emissions or feed efficiency, suggested that the cows analysed could be regarded as low methane emitters and clustered with high feed efficiency reference animals. Finally, the combination of bioinformatic analyses used in this study can be applied to assess cattle traits difficult to measure and guide enhanced nutrition and breeding methods.


Assuntos
Microbiota , Rúmen , Feminino , Bovinos , Animais , Microbiota/genética , Metagenoma , Bactérias , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Metano/metabolismo , Ração Animal , Dieta
2.
J Appl Microbiol ; 132(2): 1152-1165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34487594

RESUMO

AIMS: Fermented feed is an agricultural practice used in many regions of the world to improve the growth performance of farm animals. This study aimed to identify and evaluate the lactic acid bacteria and yeast involved in the production of fermented feed. METHODS AND RESULTS: We isolated and described two micro-organisms from autochthonous microbiota origin present in a regional feed product, Lactobacillus paracasei IBR07 (Lacticaseibacillus paracasei) and Kazachstania unispora IBR014 (Saccharomyces unisporum). Genome sequence analyses were performed to characterize both micro-organisms. Potential pathways involved in the acid response, tolerance and persistence were predicted in both genomes. Although L. paracasei and K. unispora are considered safe for animal feed, we analysed the presence of virulence factors, antibiotic resistance and pathogenicity islands. Furthermore, the Galleria mellonella model was used to support the safety of both isolates. CONCLUSIONS: We conclude that IBR07 and IBR014 strains are good candidates to be used as starter cultures for feed fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The data presented here will be helpful to explore other biotechnological aspects and constitute a starting point for further studies to establish the consumption benefit of fermented feed in farm animal production.


Assuntos
Lacticaseibacillus paracasei , Lactobacillales , Ração Animal , Animais , Fermentação , Microbiologia de Alimentos , Genômica
3.
Appl Microbiol Biotechnol ; 106(13-16): 5081-5091, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35854045

RESUMO

The implementation of cleaner technologies that minimize environmental pollution caused by conventional industrial processes is an increasing global trend. Hence, traditionally used chemicals have been replaced by novel enzymatic alternatives in a wide variety of industrial-scale processes. Enzymatic oil degumming, the first step of the oil refining process, exploits the conversion catalyzed by phospholipases to remove vegetable crude oils' phospholipids. This enzymatic method reduces the gums' volume and increases the overall oil yield. A thermostable phospholipase would be highly advantageous for industrial oil degumming as oil treatment at higher temperatures would save energy and increase the recovery of oil by facilitating the mixing and gums removal. A thermostable phosphatidylcholine (PC) (and phosphatidylethanolamine (PE))-specific phospholipase C from Thermococcus kodakarensis (TkPLC) was studied and completely removed PC and PE from crude soybean oil at 80 °C. Due to these characteristics, TkPLC is an interesting promising candidate for industrial-scale enzymatic oil degumming at high temperatures. KEY POINTS: • A thermostable phospholipase C from T. kodakarensis (TkPLC) has been identified. • TkPLC was recombinantly produced in Pichia pastoris and successfully purified. • TkPLC completely hydrolyzed PC and PE in soybean oil degumming assays at 80 °C.


Assuntos
Óleo de Soja , Fosfolipases Tipo C , Lecitinas , Fosfolipases , Fosfolipídeos , Óleo de Soja/química , Fosfolipases Tipo C/genética
4.
Mol Microbiol ; 113(2): 464-477, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31755602

RESUMO

Enterococci are gram-positive pathogens and lead to cause hospital-acquired infections worldwide. Central carbon metabolism was shown as highly induced in Enterococcus faecalis during infection context. Metabolism of α-polysaccharides was previously described as an important factor for host colonisation and biofilm formation. A better characterisation of the adaptation of this bacterium to carbohydrate availabilities may lead to a better understanding of the link between carbohydrate metabolism and the infection process of E. faecalis. Here we show that MalR, a LacI/GalR transcriptional regulator, is the main factor in the regulation of the two divergent operons involved in maltose metabolism in this bacterium. The malR gene is transcribed from the malP promoter, but also from an internal promoter inside the gene located upstream of malR. In the absence of maltose, MalR acts as a repressor and in the presence of glucose, it exerts efficient CcpA-independent carbon catabolite repression. The central PTS protein P-Ser-HPr interacts directly with MalR and enhances its DNA binding capacity, which allows E. faecalis to adapt its metabolism to environmental conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas Repressoras/metabolismo , Metabolismo dos Carboidratos/fisiologia , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica , Maltose/metabolismo , Óperon , Regiões Promotoras Genéticas
5.
Appl Microbiol Biotechnol ; 104(3): 1175-1186, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31828406

RESUMO

Enterococcus faecium is frequently isolated from fermented food; in particular, they positively contribute to the aroma compound generation in traditional cheese. Citrate fermentation is a desirable property in these bacteria, but this feature is not uniformly distributed among E. faecium strains. In the present study, three selected E. faecium strains, IQ110 (cit-), GM70 (cit+ type I), and Com12 (cit+ type II), were analyzed in their production of aroma compounds in milk. End products and volatile organic compounds (VOCs) were determined by solid-phase micro-extraction combined with gas chromatography mass spectrometry (SPME-GC-MS). Principal component analysis (PCA) of aroma compound profiles revealed a different VOC composition for the three strains. In addition, resting cell experiments of E. faecium performed in the presence of leucine, citrate, or pyruvate as aroma compound precursors allowed us to determine metabolic differences between the studied strains. GM70 (cit+ type I) showed an active citrate metabolism, with increased levels of diacetyl and acetoin generation relative to Com12 or to citrate defective IQ110 strains. In addition, in the experimental conditions tested, a defective citrate-fermenting phenotype for the Com12 strain was found, while its leucine degradation and pyruvate metabolism were conserved. In conclusion, rational selection of E. faecium strains could be performed based on genotypic and phenotypic analyses. This would result in a performing strain, such as GM70, that could positively contribute to flavor, with typical notes of diacetyl, acetoin, 3-methyl butanal, and 3-methyl butanol in an adjuvant culture.


Assuntos
Ácido Cítrico/metabolismo , Enterococcus faecium/metabolismo , Leucina/metabolismo , Leite/química , Compostos Orgânicos Voláteis/metabolismo , Animais , Enterococcus faecium/genética , Fermentação , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Leite/microbiologia , Odorantes , Paladar
6.
Antonie Van Leeuwenhoek ; 113(12): 2223-2242, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33179199

RESUMO

Bacillus cereus sensu lato strains (B. cereus group) are widely distributed in nature and have received interest for decades due to their importance in insect pest management, food production and their positive and negative repercussions in human health. Consideration of practical uses such as virulence, physiology, morphology, or ill-defined features have been applied to describe and classify species of the group. However, current comparative studies have exposed inconsistencies between evolutionary relatedness and biological significance among genomospecies of the B. cereus group. Here, the combined analyses of core-based phylogeny and all versus all Average Nucleotide Identity values based on 2116 strains were conducted to update the genomospecies circumscriptions within B. cereus group. These analyses suggested the existence of 57 genomospecies, 37 of which are novel, thus indicating that the taxonomic identities of more than 39% of the analyzed strains should be revised or updated. In addition, we found that whole-genome in silico analyses were suitable to differentiate genomospecies such as B. anthracis, B. cereus and B. thuringiensis. The prevalence of toxin and virulence factors coding genes in each of the genomospecies of the B. cereus group was also examined, using phylogeny-aware methods at wide-genome scale. Remarkably, Cry and emetic toxins, commonly assumed to be associated with B. thuringiensis and emetic B. paranthracis, respectively, did not show a positive correlation with those genomospecies. On the other hand, anthrax-like toxin and capsule-biosynthesis coding genes were positively correlated with B. anthracis genomospecies, despite not being present in all strains, and with presumably non-pathogenic genomospecies. Hence, despite these features have been so far considered relevant for industrial or medical classification of related species of the B. cereus group, they were inappropriate for their circumscription. In this study, genomospecies of the group were accurately affiliated and representative strains defined, generating a rational framework that will allow comparative analysis in epidemiological or ecological studies. Based on this classification the role of specific markers such as Type VII secretion system, cytolysin, bacillolysin, and siderophores such as petrobactin were pointed out for further analysis.


Assuntos
Bacillus anthracis , Bacillus , Bacillus cereus/genética , Humanos , Fenótipo , Filogenia
7.
Appl Microbiol Biotechnol ; 103(7): 3123-3134, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729287

RESUMO

Gem-Pro is a new tool for gene mining and functional profiling of bacteria. It initially identifies homologous genes using BLAST and then applies three filtering steps to select orthologous gene pairs. The first one uses BLAST score values to identify trivial paralogs. The second filter uses the shared identity percentages of found trivial paralogs as internal witnesses of non-orthology to set orthology cutoff values. The third filtering step uses conditional probabilities of orthology and non-orthology to define new cutoffs and generate supportive information of orthology assignations. Additionally, a subsidiary tool, called q-GeM, was also developed to mine traits of interest using logistic regression (LR) or linear discriminant analysis (LDA) classifiers. q-GeM is more efficient in the use of computing resources than Gem-Pro but needs an initial classified set of homologous genes in order to train LR and LDA classifiers. Hence, q-GeM could be used to analyze new set of strains with available genome sequences, without the need to rerun a complete Gem-Pro analysis. Finally, Gem-Pro and q-GeM perform a synteny analysis to evaluate the integrity and genomic arrangement of specific pathways of interest to infer their presence. The tools were applied to more than 2 million homologous pairs encoded by Bacillus strains generating statistical supported predictions of trait contents. The different patterns of encoded traits of interest were successfully used to perform a descriptive bacterial profiling.


Assuntos
Bactérias/genética , Impressões Digitais de DNA/instrumentação , Genômica/métodos , Filogenia , Software , Bacillus/genética , Mineração de Dados/métodos
8.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455338

RESUMO

Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose.IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/enzimologia , Hidrolases/metabolismo , Polissacarídeos/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Hidrolases/genética , Maltose/metabolismo , Oligossacarídeos/metabolismo , Óperon , Trissacarídeos/metabolismo
9.
Arch Microbiol ; 198(9): 893-904, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27270463

RESUMO

Dairy production plants produce highly polluted wastewaters rich in organic molecules such as lactose, proteins and fats. Fats generally lead to low overall performance of the treatment system. In this study, a wastewater dairy lagoon was used as microbial source and different screening strategies were conducted to select 58 lipolytic microorganisms. Exoenzymes and RAPD analyses revealed genetic and phenotypic diversity among isolates. Bacillus safensis, Pseudomonas alcaliphila and the potential pathogens, B. cereus, Aeromonas and Acinetobacter were identified by 16S-rRNA, gyrA, oprI and/or oprL sequence analyses. Five out of 10 selected isolates produced lipolytic enzymes and grew in dairy wastewater. Based on these abilities and their safety, B. safensis S9 and P. alcaliphila ED1 were selected and their genome sequences determined. The genome of strain S9 and ED1 consisted of 3,794,315 and 5,239,535 bp and encoded for 3990 and 4844 genes, respectively. Putative extracellular enzymes with lipolytic (12 and 16), proteolytic (20) or hydrolytic (10 and 15) activity were identified for S9 and ED1 strains, respectively. These bacteria also encoded other technological relevant proteins such as amylases, proteases, glucanases, xylanases and pectate lyases.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/isolamento & purificação , Indústria de Laticínios , Pseudomonas/enzimologia , Águas Residuárias/microbiologia , Bacillus/genética , Bacillus/isolamento & purificação , Sequência de Bases , Endopeptidases/metabolismo , Genótipo , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
10.
BMC Genomics ; 15: 489, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942651

RESUMO

BACKGROUND: Enterococcus mundtii is a yellow-pigmented microorganism rarely found in human infections. The draft genome sequence of E. mundtii was recently announced. Its genome encodes at least 2,589 genes and 57 RNAs, and 4 putative genomic islands have been detected. The objective of this study was to compare the genetic content of E. mundtii with respect to other enterococcal species and, more specifically, to identify genes coding for putative virulence traits present in enterococcal opportunistic pathogens. RESULTS: An in-depth mining of the annotated genome was performed in order to uncover the unique properties of this microorganism, which allowed us to detect a gene encoding the antimicrobial peptide mundticin among other relevant features. Moreover, in this study a comparative genomic analysis against commensal and pathogenic enterococcal species, for which genomic sequences have been released, was conducted for the first time. Furthermore, our study reveals significant similarities in gene content between this environmental isolate and the selected enterococci strains (sharing an "enterococcal gene core" of 805 CDS), which contributes to understand the persistence of this genus in different niches and also improves our knowledge about the genetics of this diverse group of microorganisms that includes environmental, commensal and opportunistic pathogens. CONCLUSION: Although E. mundtii CRL1656 is phylogenetically closer to E. faecium, frequently responsible of nosocomial infections, this strain does not encode the most relevant relevant virulence factors found in the enterococcal clinical isolates and bioinformatic predictions indicate that it possesses the lowest number of putative pathogenic genes among the most representative enterococcal species. Accordingly, infection assays using the Galleria mellonella model confirmed its low virulence.


Assuntos
Antibiose/genética , Enterococcus/genética , Genoma Bacteriano , Genômica , Bacteriocinas/genética , Hibridização Genômica Comparativa , Farmacorresistência Bacteriana/genética , Enterococcus/classificação , Enterococcus/patogenicidade , Microbiologia Ambiental , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Ilhas Genômicas , Humanos , Filogenia , Pigmentos Biológicos/genética , Estresse Fisiológico/genética , Virulência/genética , Fatores de Virulência/genética
11.
Microbiol Resour Announc ; 13(3): e0121523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38315107

RESUMO

In this work, we report the discovery and characterization of Garey24, a bacteriophage that forms medium-size plaques with halo rings isolated from a soil sample in Funes, Argentina. Its 41,522 bp circularly permuted genome contains 63 putative protein-coding genes. Based on gene content similarity, Garey24 was assigned to subcluster EA1.

12.
Front Microbiol ; 14: 1117684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846772

RESUMO

Enterococcus is able to grow in media at pH from 5.0 to 9.0 and a high concentration of NaCl (8%). The ability to respond to these extreme conditions requires the rapid movement of three critical ions: proton (H+), sodium (Na+), and potassium (K+). The activity of the proton F0F1 ATPase and the sodium Na+ V0V1 type ATPase under acidic or alkaline conditions, respectively, is well established in these microorganisms. The potassium uptake transporters KtrI and KtrII were described in Enterococcus hirae, which were associated with growth in acidic and alkaline conditions, respectively. In Enterococcus faecalis, the presence of the Kdp (potassium ATPase) system was early established. However, the homeostasis of potassium in this microorganism is not completely explored. In this study, we demonstrate that Kup and KimA are high-affinity potassium transporters, and the inactivation of these genes in E. faecalis JH2-2 (a Kdp laboratory natural deficient strain) had no effect on the growth parameters. However, in KtrA defective strains (ΔktrA, ΔkupΔktrA) an impaired growth was observed under stress conditions, which was restored to wild type levels by external addition of K+ ions. Among the multiplicity of potassium transporters identify in the genus Enterococcus, Ktr channels (KtrAB and KtrAD), and Kup family symporters (Kup and KimA) are present and may contribute to the particular resistance of these microorganisms to different stress conditions. In addition, we found that the presence of the Kdp system in E. faecalis is strain-dependent, and this transporter is enriched in strains of clinical origin as compared to environmental, commensal, or food isolates.

13.
Food Res Int ; 169: 112861, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254435

RESUMO

The use of esterase/lipase enzymes of different origins in food industry is a widely employed strategy to enhance the formation of characteristic aromatic compounds derived from fat and diversify flavour. In the present work, we studied EstA enzyme of Enterococcus faecalis and a high purity Rhizomucor miehei lipase (Palatase). EstA was obtained recombinantly in Escherichia coli BL21 (DE3), and optimum esterase activity was detected at pH 6.75 and 40 °C. We evaluated the effect of the enzymes on milk mixtures prepared with different fat contents (2.8 and 6%) and structure (native or homogenized) on volatile compounds profiles. The milk fat structure before and after the application of low homogenization was characterized by dynamic light dispersion and microscopy. Native milk fat mixtures presented particles of 4.6 µm and 184 nm and homogenized mixtures had particles of 1.4 µm and 258 nm; microscopy images were in concordance with these results. Fifteen volatile compounds were identified, including ketones, esters, alcohols, and acids. We showed the key role of milk fat levels and microstructure in the nature of the volatile compounds produced by the R. miehei enzyme. Both in native or homogenized states, the highest content of fat favored a higher production of acids whereas the lowest fat level favored a higher esters production along with a more balanced volatile profile. For EstA enzyme, results showed a limited action on fat, as biosynthesis of esters only increased with the highest fat level homogenized.


Assuntos
Enterococcus faecalis , Leite , Animais , Leite/química , Lipase , Manipulação de Alimentos/métodos , Ésteres/análise
14.
Acta Trop ; 241: 106889, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893830

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Vacinas , Feminino , Animais , Camundongos , Administração Intranasal , Imunidade nas Mucosas , Linfonodos , Doença de Chagas/prevenção & controle , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Imunoglobulina G , Camundongos Endogâmicos BALB C
15.
J Bacteriol ; 194(2): 550, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22207752

RESUMO

We report the draft genome sequence of Enterococcus mundtii CRL1656, which was isolated from the stripping milk of a clinically healthy adult Holstein dairy cow from a dairy farm of the northwestern region of Tucumán (Argentina). The 3.10-Mb genome sequence consists of 450 large contigs and contains 2,741 predicted protein-coding genes.


Assuntos
Enterococcus/classificação , Enterococcus/genética , Genoma Bacteriano , Animais , Argentina/epidemiologia , Bovinos , Feminino , Mastite Bovina/epidemiologia , Mastite Bovina/microbiologia , Leite/microbiologia , Dados de Sequência Molecular
16.
Appl Environ Microbiol ; 78(6): 1936-45, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247139

RESUMO

In Enterococcus faecalis, the mae locus is constituted by two putative divergent operons, maePE and maeKR. The first operon encodes a putative H(+)/malate symporter (MaeP) and a malic enzyme (MaeE) previously shown to be essential for malate utilization in this bacterium. The maeKR operon encodes two putative proteins with significant similarity to two-component systems involved in sensing malate and activating its assimilation in bacteria. Our transcriptional and genetic assays showed that maePE and maeKR are induced in response to malate by the response regulator MaeR. In addition, we observed that both operons were partially repressed in the presence of glucose. Accordingly, the cometabolism of this sugar and malate was detected. The binding of the complex formed by CcpA and its corepressor P-Ser-HPr to a cre site located in the mae region was demonstrated in vitro and explains the carbon catabolite repression (CCR) observed for the maePE operon. However, our results also provide evidence for a CcpA-independent CCR mechanism regulating the expression of both operons. Finally, a biomass increment of 40 or 75% was observed compared to the biomass of cells grown only on glucose or malate, respectively. Cells cometabolizing both carbon sources exhibit a higher rate of glucose consumption and a lower rate of malate utilization. The growth improvement achieved by E. faecalis during glucose-malate cometabolism might explain why this microorganism employs different regulatory systems to tightly control the assimilation of both carbon sources.


Assuntos
Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Malatos/metabolismo , Óperon , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Enterococcus faecalis/crescimento & desenvolvimento , Glucose/metabolismo
17.
Vaccine ; 40(15): 2311-2323, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35279330

RESUMO

The new generation of vaccines for Chagas disease, are focused to induce both humoral and cellular response to effectively control Trypanosoma cruzi parasites. The administration of vaccine formulations intranasally has the advantage over parenteral routes that can induce a specific response at mucosal and systemic levels. This study aimed to evaluate and compare the immunogenicity and prophylactic effectiveness of two Trans-sialidase (TS)-based mucosal vaccines against T. cruzi administered intranasally. Vaccines consisted of a recombinant fragment of TS expressed in Lactococcus lactis formulated in two different adjuvants. The first, was an immunostimulant particle (ISPA, an ISCOMATRIX-like adjuvant), while the second was the dinucleotide c-di-AMP, which have shown immunostimulant properties at the mucosal level. BALB/c mice were immunized intranasally (3 doses, one every two weeks) with each formulation (TS + ISPA or TS + c-di-AMP) and with TS alone or vehicle (saline solution) as controls. Fifteen days after the last immunization, both TS + ISPA or TS + c-di-AMP induced an evident systemic humoral and cellular response, as judged by the increased plasma anti-TS IgG2a titers and IgG2a/IgG1 ratio and enhanced cellular response against TS. Plasma derived antibodies from TS + c-di-AMP also inhibit in vitro the invasion capacity of T. cruzi. Furthermore, specific secretory IgA was more enhanced in TS + c-di-AMP group. Protective efficacy was proved in vaccinated animals by an oral T. cruzi-challenge. Parasitemia control was only achieved by animals vaccinated with TS + c-di-AMP, despite all vaccinates groups showed enhanced CD8+IFN-γ+ T cell numbers. In addition, it was reflected during the acute phase in a significant reduction of tissue parasite load, clinical manifestations and diminished tissue damage. The better prophylactic capacity elicited by TS + c-di-AMP was related to the induction of neutralizing plasma antibodies and augmented levels of mucosal IgA since TS + ISPA and TS + c-di-AMP groups displayed similar immunogenicity and CD8+IFN-γ+ T-cell response. Therefore, TS + c-di-AMP formulation appears as a promising strategy for prophylaxis against T. cruzi.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Animais , Doença de Chagas/prevenção & controle , Fosfatos de Dinucleosídeos , Glicoproteínas , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase
18.
Trends Microbiol ; 29(5): 384-387, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516594

RESUMO

Copper (Cu) plays a key role at the host-pathogen interface as both an essential element and a toxic element. Intracellular strains of pathogenic Salmonella have acquired the periplasmic Cu chaperone, CueP, and the thiol oxidoreductases complex Scs, while losing the ancestral Cu-detoxification Cus system. Coregulation of these species-specific factors link Cu with redox stress and allows Salmonella to counteract Cu toxicity during infection.


Assuntos
Membrana Celular/metabolismo , Cobre/metabolismo , Interações Hospedeiro-Patógeno , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Humanos , Oxirredução , Periplasma/metabolismo , Virulência
19.
mSphere ; 5(4)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727858

RESUMO

Acinetobacter baumannii represents nowadays an important nosocomial pathogen of poorly defined reservoirs outside the clinical setting. Here, we conducted whole-genome sequencing analysis of the Acinetobacter sp. NCIMB8209 collection strain, isolated in 1943 from the aerobic degradation (retting) of desert guayule shrubs. Strain NCIMB8209 contained a 3.75-Mb chromosome and a plasmid of 134 kb. Phylogenetic analysis based on core genes indicated NCIMB8209 affiliation to A. baumannii, a result supported by the identification of a chromosomal blaOXA-51-like gene. Seven genomic islands lacking antimicrobial resistance determinants, 5 regions encompassing phage-related genes, and notably, 93 insertion sequences (IS) were found in this genome. NCIMB8209 harbors most genes linked to persistence and virulence described in contemporary A. baumannii clinical strains, but many of the genes encoding components of surface structures are interrupted by IS. Moreover, defense genetic islands against biological aggressors such as type 6 secretion systems or CRISPR-cas are absent from this genome. These findings correlate with a low capacity of NCIMB8209 to form biofilm and pellicle, low motility on semisolid medium, and low virulence toward Galleria mellonella and Caenorhabditis elegans Searching for catabolic genes and concomitant metabolic assays revealed the ability of NCIMB8209 to grow on a wide range of substances produced by plants, including aromatic acids and defense compounds against external aggressors. All the above features strongly suggest that NCIMB8209 has evolved specific adaptive features to a particular environmental niche. Moreover, they also revealed that the remarkable genetic plasticity identified in contemporary A. baumannii clinical strains represents an intrinsic characteristic of the species.IMPORTANCEAcinetobacter baumannii is an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) opportunistic pathogen, with poorly defined natural habitats/reservoirs outside the clinical setting. A. baumannii arose from the Acinetobacter calcoaceticus-A. baumannii complex as the result of a population bottleneck, followed by a recent population expansion from a few clinically relevant clones endowed with an arsenal of resistance and virulence genes. Still, the identification of virulence traits and the evolutionary paths leading to a pathogenic lifestyle has remained elusive, and thus, the study of nonclinical ("environmental") A. baumannii isolates is necessary. We conducted here comparative genomic and virulence studies on A. baumannii NCMBI8209 isolated in 1943 from the microbiota responsible for the decomposition of guayule, and therefore well differentiated both temporally and epidemiologically from the multidrug-resistant strains that are predominant nowadays. Our work provides insights on the adaptive strategies used by A. baumannii to escape from host defenses and may help the adoption of measures aimed to limit its further dissemination.


Assuntos
Acinetobacter baumannii/genética , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Ilhas Genômicas , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Microbiologia Ambiental , Variação Genética , Genômica , Filogenia , Plantas/microbiologia , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
20.
Front Microbiol ; 10: 2519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736933

RESUMO

Several Acinetobacter strains are important nosocomial pathogens, with Acinetobacter baumannii as the species of greatest concern worldwide due to its multi-drug resistance and recent appearance of hyper-virulent strains in the clinical setting. Acinetobacter colonization of the environment and the host is associated with a multitude of factors which remain poorly characterized. Among them, the secretion systems (SS) encoded by Acinetobacter species confer adaptive advantages depending on the niche occupied. Different SS have been characterized in this group of microorganisms, including T6SS used by several Acinetobacter species to outcompete other bacteria and in some A. baumannii strains for Galleria mellonella colonization. Therefore, to better understand the distribution of the T6SS in this genus we carried out an in-depth comparative genomic analysis of the T6SS in 191 sequenced strains. To this end, we analyzed the gene content, sequence similarity, synteny and operon structure of each T6SS loci. The presence of a single conserved T6SS-main cluster (T6SS-1), with two different genetic organizations, was detected in the genomes of several ecologically diverse species. Furthermore, a second main cluster (T6SS-2) was detected in a subgroup of 3 species of environmental origin. Detailed analysis also showed an impressive genetic versatility in T6SS-associated islands, carrying VgrG, PAAR and putative toxin-encoding genes. This in silico study represents the first detailed intra-species comparative analysis of T6SS-associated genes in the Acinetobacter genus, that should contribute to the future experimental characterization of T6SS proteins and effectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA