Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Virol ; 96(8): e0012822, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343766

RESUMO

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Assuntos
COVID-19 , Furina , SARS-CoV-2 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , COVID-19/virologia , Furina/metabolismo , Células HeLa , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
2.
J Biol Chem ; 297(4): 101177, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508778

RESUMO

The hepatic carbohydrate-recognizing asialoglycoprotein receptor (ASGR1) mediates the endocytosis/lysosomal degradation of desialylated glycoproteins following binding to terminal galactose/N-acetylgalactosamine. Human heterozygote carriers of ASGR1 deletions exhibit ∼34% lower risk of coronary artery disease and ∼10% to 14% reduction of non-HDL cholesterol. Since the proprotein convertase PCSK9 is a major degrader of the low-density lipoprotein receptor (LDLR), we investigated the degradation and functionality of LDLR and/or PCSK9 by endogenous/overexpressed ASGR1 using Western blot and immunofluorescence in HepG2-naïve and HepG2-PCSK9-knockout cells. ASGR1, like PCSK9, targets LDLR, and both independently interact with/enhance the degradation of the receptor. This lack of cooperativity between PCSK9 and ASGR1 was confirmed in livers of wildtype (WT) and Pcsk9-/- mice. ASGR1 knockdown in HepG2-naïve cells significantly increased total (∼1.2-fold) and cell-surface (∼4-fold) LDLR protein. In HepG2-PCSK9-knockout cells, ASGR1 silencing led to ∼2-fold higher levels of LDLR protein and DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-LDL uptake associated with ∼9-fold increased cell-surface LDLR. Overexpression of WT-ASGR1/2 primarily reduced levels of immature non-O-glycosylated LDLR (∼110 kDa), whereas the triple Ala-mutant of Gln240/Trp244/Glu253 (characterized by loss of carbohydrate binding) reduced expression of the mature form of LDLR (∼150 kDa), suggesting that ASGR1 binds the LDLR in both a sugar-dependent and -independent fashion. The protease furin cleaves ASGR1 at the RKMK103↓ motif into a secreted form, likely resulting in a loss of function on LDLR. Altogether, we demonstrate that LDLR is the first example of a liver-receptor ligand of ASGR1. We conclude that silencing of ASGR1 and PCSK9 may lead to higher LDL uptake by hepatocytes, thereby providing a novel approach to further reduce LDL cholesterol levels.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Furina/metabolismo , Fígado/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Animais , Receptor de Asialoglicoproteína/genética , Furina/genética , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética
3.
Immunity ; 39(4): 711-21, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24138882

RESUMO

Toll-like receptor 7 (TLR7) triggers antiviral immune responses by recognizing viral single-stranded RNA in endosomes, but the biosynthetic pathway of human TLR7 (hTLR7) remains unclear. Here, we show that hTLR7 is proteolytically processed and that the C-terminal fragment selectively accumulates in endocytic compartments. hTLR7 processing occurred at neutral pH and was dependent on furin-like proprotein convertases (PCs). Furthermore, TLR7 processing was required for its functional response to TLR7 agonists such as R837 or influenza virus. Notably, proinflammatory and differentiation stimuli increased the expression of furin-like PCs in immune cells, suggesting a positive feedback mechanism for TLR7 processing during infection. Because self-RNA can under certain conditions activate TLR7 and trigger autoimmunity, our results identify furin-like PCs as a possible target to attenuate TLR7-dependent autoimmunity and other immune pathologies.


Assuntos
Furina/metabolismo , Macrófagos/metabolismo , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional , Receptor 7 Toll-Like/metabolismo , Sequência de Aminoácidos , Autoimunidade , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/imunologia , Retroalimentação Fisiológica , Furina/genética , Furina/imunologia , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Lentivirus/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Dados de Sequência Molecular , Orthomyxoviridae/imunologia , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/imunologia , Estrutura Terciária de Proteína , Quinolinas/farmacologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia
4.
Arterioscler Thromb Vasc Biol ; 39(10): 1996-2013, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31553664

RESUMO

OBJECTIVE: PCSK9 (proprotein convertase subtilisin-kexin 9) enhances the degradation of the LDLR (low-density lipoprotein receptor) in endosomes/lysosomes. This study aimed to determine the sites of PCSK9 phosphorylation at Ser-residues and the consequences of such posttranslational modification on the secretion and activity of PCSK9 on the LDLR. Approach and Results: Fam20C (family with sequence similarity 20, member C) phosphorylates serines in secretory proteins containing the motif S-X-E/phospho-Ser, including the cholesterol-regulating PCSK9. In situ hybridization of Fam20C mRNA during development and in adult mice revealed a wide tissue distribution, including liver, but not small intestine. Here, we show that Fam20C phosphorylates PCSK9 at Serines 47, 666, 668, and 688. In hepatocytes, phosphorylation enhances PCSK9 secretion and maximizes its induced degradation of the LDLR via the extracellular and intracellular pathways. Replacing any of the 4 Ser by the phosphomimetic Glu or Asp enhanced PCSK9 activity only when the other sites are phosphorylated, whereas Ala substitutions reduced it, as evidenced by Western blotting, Elisa, and LDLR-immunolabeling. This newly uncovered PCSK9/LDLR regulation mechanism refines our understanding of the implication of global PCSK9 phosphorylation in the modulation of LDL-cholesterol and rationalizes the consequence of natural mutations, for example, S668R and E670G. Finally, the relationship of Ser-phosphorylation to the implication of PCSK9 in regulating LDL-cholesterol in the neurological Fragile X-syndrome disorder was investigated. CONCLUSIONS: Ser-phosphorylation of PCSK9 maximizes both its secretion and activity on the LDLR. Mass spectrometric approaches to measure such modifications were developed and applied to quantify the levels of bioactive PCSK9 in human plasma under normal and pathological conditions.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Hiperlipoproteinemia Tipo II/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Animais , Western Blotting , Células Cultivadas , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/fisiopatologia , Hibridização In Situ/métodos , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Fosforilação/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores de LDL/metabolismo , Sensibilidade e Especificidade
5.
J Biol Chem ; 292(25): 10564-10573, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28468828

RESUMO

Protein C, a secretory vitamin K-dependent anticoagulant serine protease, inactivates factors Va/VIIIa. It is exclusively synthesized in liver hepatocytes as an inactive zymogen (proprotein C). In humans, thrombin cleavage of the propeptide at PR221↓ results in activated protein C (APC; residues 222-461). However, the propeptide is also cleaved by a furin-like proprotein convertase(s) (PCs) at KKRSHLKR199↓ (underlined basic residues critical for the recognition by PCs), but the order of cleavage is unknown. Herein, we present evidence that at the surface of COS-1 cells, mouse proprotein C is first cleaved by the convertases furin, PC5/6A, and PACE4. In mice, this cleavage occurs at the equivalent site, KKRKILKR198↓, and requires the presence of Arg198 at P1 and a combination of two other basic residues at either P2 (Lys197), P6 (Arg193), or P8 (Lys191) positions. Notably, the thrombin-resistant R221A mutant is still cleaved by these PCs, revealing that convertase cleavage can precede thrombin activation. This conclusion was supported by the fact that the APC-specific activity in the medium of COS-1 cells is exclusively dependent on prior cleavage by the convertases, because both R198A and R221A lack protein C activity. Primary cultures of hepatocytes derived from wild-type or hepatocyte-specific furin, PC5/6, or complete PACE4 knock-out mice suggested that the cleavage of overexpressed proprotein C is predominantly performed by furin intracellularly and by all three proprotein convertases at the cell surface. Indeed, plasma analyses of single-proprotein convertase-knock-out mice showed that loss of the convertase furin or PC5/6 in hepatocytes results in a ∼30% decrease in APC levels, with no significant contribution from PACE4. We conclude that prior convertase cleavage of protein C in hepatocytes is critical for its thrombin activation.


Assuntos
Hepatócitos/enzimologia , Fígado/enzimologia , Pró-Proteína Convertase 5/metabolismo , Proteína C/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática/fisiologia , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Pró-Proteína Convertase 5/genética , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Proteína C/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Trombina/genética , Trombina/metabolismo
6.
J Biol Chem ; 292(5): 1573-1590, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27998977

RESUMO

Familial hypercholesterolemia (FH) is characterized by severely elevated low density lipoprotein (LDL) cholesterol. Herein, we identified an FH patient presenting novel compound heterozygote mutations R410S and G592E of the LDL receptor (LDLR). The patient responded modestly to maximum rosuvastatin plus ezetimibe therapy, even in combination with a PCSK9 monoclonal antibody injection. Using cell biology and molecular dynamics simulations, we aimed to define the underlying mechanism(s) by which these LDLR mutations affect LDL metabolism and lead to hypercholesterolemia. Our data showed that the LDLR-G592E is a class 2b mutant, because it mostly failed to exit the endoplasmic reticulum and was degraded. Even though LDLR-R410S and LDLR-WT were similar in levels of cell surface and total receptor and bound equally well to LDL or extracellular PCSK9, the LDLR-R410S was resistant to exogenous PCSK9-mediated degradation in endosomes/lysosomes and showed reduced LDL internalization and degradation relative to LDLR-WT. Evidence is provided for a tighter association of LDL with LDLR-R410S at acidic pH, a reduced LDL delivery to late endosomes/lysosomes, and an increased release in the medium of the bound/internalized LDL, as compared with LDLR-WT. These data suggested that LDLR-R410S recycles loaded with its LDL-cargo. Our findings demonstrate that LDLR-R410S represents an LDLR loss-of-function through a novel class 8 FH-causing mechanism, thereby rationalizing the observed phenotype.


Assuntos
Endossomos/metabolismo , Hiperlipoproteinemia Tipo II , Lipoproteínas LDL/metabolismo , Lisossomos/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL , Substituição de Aminoácidos , Endossomos/genética , Feminino , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Lisossomos/genética , Masculino , Mutação de Sentido Incorreto , Ligação Proteica , Receptores de LDL/genética , Receptores de LDL/metabolismo
7.
Biol Chem ; 399(12): 1363-1374, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30044755

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that binds and escorts the low density lipoprotein receptor (LDLR) into the lysosomal degradation pathway. Prescribed monoclonal antibodies (mAbs) against PCSK9 prevent its binding to the LDLR, and result in ~60% lower LDL cholesterol (LDLc) levels. Although efficient, mAbs are expensive. Hence other PCSK9 inhibitors are needed. For screening purpose, we developed C57BL/6J mice expressing the human PCSK9 gene under the control of its own promoter, but lacking endogenous mouse PCSK9. All lines recapitulate the endogenous PCSK9 expression pattern. The Tg2 line that expresses physiological levels of human PCSK9 (hPCSK9) was selected to characterize the inhibitory properties of a previously reported single domain antibody (sdAb), PKF8-mFc, which binds the C-terminal domain of PCSK9. Upon intraveinous injection of 10 mg/kg, PKF8-mFc and the mAb evolocumab neutralized ~50% and 100% of the hPCSK9 impact on total cholesterol (TC) levels, respectively, but PKF8-mFc had a more sustained effect. PKF8-mFc barely affected hPCSK9 levels, whereas evolocumab promoted a 4-fold increase 3 days post-injection, suggesting very different inhibitory mechanisms. The present study also shows that the new transgenic mice are well suited to screen a variety of hPCSK9 inhibitors.


Assuntos
Anticorpos Monoclonais/farmacologia , Cisteína/antagonistas & inibidores , Histidina/antagonistas & inibidores , Inibidores de PCSK9 , Animais , Anticorpos Monoclonais Humanizados , Cisteína/metabolismo , Genótipo , Histidina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/metabolismo
9.
J Biol Chem ; 291(47): 24676-24687, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27758865

RESUMO

The mechanism of LDL receptor (LDLR) degradation mediated by the proprotein convertase subtilisin/kexin type 9 (PCSK9) has been extensively studied; however, many steps within this process remain unclear and still require characterization. Recent studies have shown that PCSK9 lacking its Cys/His-rich domain can still promote LDLR internalization, but the complex does not reach the lysosome suggesting the presence of an additional interaction partner(s). In this study we carried out an unbiased screening approach to identify PCSK9-interacting proteins in the HepG2 cells' secretome using co-immunoprecipitation combined with mass spectrometry analyses. Several interacting proteins were identified, including glypican-3 (GPC3), phospholipid transfer protein, matrilin-3, tissue factor pathway inhibitor, fibrinogen-like 1, and plasminogen activator inhibitor-1. We then validated these interactions by co-immunoprecipitation and Western blotting. Furthermore, functional validation was examined by silencing each candidate protein in HepG2 cells using short hairpin RNAs to determine their effect on LDL uptake and LDLR levels. Only GPC3 and phospholipid transfer protein silencing in HepG2 cells significantly increased LDL uptake in these cells and displayed higher total LDLR protein levels compared with control cells. Moreover, our study provides the first evidence that GPC3 can modulate the PCSK9 extracellular activity as a competitive binding partner to the LDLR in HepG2 cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glipicanas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Carcinoma Hepatocelular/genética , Glipicanas/genética , Células Hep G2 , Humanos , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Neoplasias Hepáticas/genética , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Proteínas de Neoplasias/genética , Pró-Proteína Convertase 9/genética , Ligação Proteica , Receptores de LDL/genética
10.
J Biol Chem ; 291(32): 16659-71, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27284008

RESUMO

Single domain antibodies (sdAbs) correspond to the antigen-binding domains of camelid antibodies. They have the same antigen-binding properties and specificity as monoclonal antibodies (mAbs) but are easier and cheaper to produce. We report here the development of sdAbs targeting human PCSK9 (proprotein convertase subtilisin/kexin type 9) as an alternative to anti-PCSK9 mAbs. After immunizing a llama with human PCSK9, we selected four sdAbs that bind PCSK9 with a high affinity and produced them as fusion proteins with a mouse Fc. All four sdAb-Fcs recognize the C-terminal Cys-His-rich domain of PCSK9. We performed multiple cellular assays and demonstrated that the selected sdAbs efficiently blocked PCSK9-mediated low density lipoprotein receptor (LDLR) degradation in cell lines, in human hepatocytes, and in mouse primary hepatocytes. We further showed that the sdAb-Fcs do not affect binding of PCSK9 to the LDLR but rather block its induced cellular LDLR degradation. Pcsk9 knock-out mice expressing a human bacterial artificial chromosome (BAC) transgene were generated, resulting in plasma levels of ∼300 ng/ml human PCSK9. Mice were singly or doubly injected with the best sdAb-Fc and analyzed at day 4 or 11, respectively. After 4 days, mice exhibited a 32 and 44% decrease in the levels of total cholesterol and apolipoprotein B and ∼1.8-fold higher liver LDLR protein levels. At 11 days, the equivalent values were 24 and 46% and ∼2.3-fold higher LDLR proteins. These data constitute a proof-of-principle for the future usage of sdAbs as PCSK9-targeting drugs that can efficiently reduce LDL-cholesterol, and as tools to study the Cys-His-rich domain-dependent sorting the PCSK9-LDLR complex to lysosomes.


Assuntos
LDL-Colesterol/metabolismo , Pró-Proteína Convertase 9/metabolismo , Proteólise/efeitos dos fármacos , Receptores de LDL/metabolismo , Anticorpos de Domínio Único/farmacologia , Animais , LDL-Colesterol/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Inibidores de PCSK9 , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética
11.
J Biol Chem ; 290(30): 18609-20, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26085104

RESUMO

Amyloid precursor-like protein 2 (APLP2) and sortilin were reported to individually bind the proprotein convertase subtilisin/kexin type 9 (PCSK9) and regulate its activity on the low-density lipoprotein receptor (LDLR). The data presented herein demonstrate that mRNA knockdowns of APLP2, sortilin, or both in the human hepatocyte cell lines HepG2 and Huh7 do not affect the ability of extracellular PCSK9 to enhance the degradation of the LDLR. Furthermore, mice deficient in APLP2 or sortilin do not exhibit significant changes in liver LDLR or plasma total cholesterol levels. Moreover, cellular overexpression of one or both proteins does not alter PCSK9 secretion, or its activity on the LDLR. We conclude that PCSK9 enhances the degradation of the LDLR independently of either APLP2 or sortilin both ex vivo and in mice. Interestingly, when co-expressed with PCSK9, both APLP2 and sortilin were targeted for lysosomal degradation. Using chemiluminescence proximity and co-immunoprecipitation assays, as well as biosynthetic analysis, we discovered that sortilin binds and stabilizes APLP2, and hence could regulate its intracellular functions on other targets.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pró-Proteína Convertases/metabolismo , Proteólise , Receptores de LDL/biossíntese , Serina Endopeptidases/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Receptores de LDL/genética , Serina Endopeptidases/genética
12.
Proc Natl Acad Sci U S A ; 110(43): 17362-7, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101515

RESUMO

PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Subtilisinas/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Western Blotting , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Flavanonas/farmacologia , Expressão Gênica , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Hipocampo/metabolismo , Humanos , Hibridização In Situ , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subtilisinas/genética
13.
J Lipid Res ; 56(11): 2133-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26323289

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9), the last member of the family of Proprotein Convertases related to Subtilisin and Kexin, regulates LDL-cholesterol by promoting the endosomal/lysosomal degradation of the LDL receptor (LDLR). Herein, we show that the LDLR cell surface levels dramatically increase in the liver and pancreatic islets of PCSK9 KO male but not female mice. In contrast, in KO female mice, the LDLR is more abundant at the cell surface enterocytes, as is the VLDL receptor (VLDLR) at the cell surface of adipocytes. Ovariectomy of KO female mice led to a typical KO male pattern, whereas 17ß-estradiol (E2) treatment restored the female pattern without concomitant changes in LDLR adaptor protein 1 (also known as ARH), disabled-2, or inducible degrader of the LDLR expression levels. We also show that this E2-mediated regulation, which is observed only in the absence of PCSK9, is abolished upon feeding the mice a high-cholesterol diet. The latter dramatically represses PCSK9 expression and leads to high surface levels of the LDLR in the hepatocytes of all sexes and genotypes. In conclusion, the absence of PCSK9 results in a sex- and tissue-specific subcellular distribution of the LDLR and VLDLR, which is determined by E2 levels.


Assuntos
Pró-Proteína Convertases/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/genética , Adiposidade , Animais , Estradiol/fisiologia , Feminino , Gordura Intra-Abdominal/metabolismo , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/sangue , Pró-Proteína Convertases/deficiência , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina Endopeptidases/sangue , Serina Endopeptidases/deficiência , Caracteres Sexuais
14.
J Biol Chem ; 288(37): 26410-8, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23918928

RESUMO

The proprotein convertases (PCs) furin, PC5/6, and PACE4 exhibit unique and/or complementary functions. Their knock-out (KO) in mice resulted in strong and specific phenotypes demonstrating that, in vivo, these PCs are unique and essential during development. However, they also exhibit redundant functions. Liver angiopoietin-like 3 (ANGPTL3) inhibits lipolysis by binding to lipoprotein lipases. It is found in the plasma as full length and truncated forms. The latter is more active and generated by cleavage at a furin-like site. Endothelial lipase (EL) binds heparin sulfate proteoglycans on cell surfaces and catalyzes the hydrolysis of HDL phospholipids. EL activity is regulated by two endogenous inhibitors, ANGPTL3 and ANGPTL4, and by PCs that inactivate EL through cleavage releasing the N-terminal catalytic and C-terminal lipid-binding domains. Herein, because furin and PC5/6 complete KOs are lethal, we used mice lacking furin or PC5/6 specifically in hepatocytes (hKO) or mice completely lacking PACE4. In primary hepatocytes, ANGPTL3 was processed into a shorter form of ANGPTL3 intracellularly by furin only, and extracellularly mainly by PACE4. In vivo, the absence of furin in hepatocytes reduced by ∼50% the circulating levels of cleaved ANGPTL3, while the lack of PACE4 had only a minor effect. Analysis of the EL processing in primary hepatocytes and in vivo revealed that it is mostly cleaved by furin. However, the lack of furin or PC5/6 in hepatocytes and complete PACE4 KO did not appreciably modify plasma HDL levels or EL activity. Thus, inhibition of furin in liver would not be expected to modify the plasma lipid profiles.


Assuntos
Angiopoietinas/metabolismo , Furina/metabolismo , Hepatócitos/enzimologia , Lipase/metabolismo , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Células COS , Chlorocebus aethiops , HDL-Colesterol/metabolismo , Furina/genética , Inativação Gênica , Lipoproteínas HDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfolipídeos/metabolismo , Pró-Proteína Convertase 5/genética
15.
Hepatology ; 57(6): 2514-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23390091

RESUMO

UNLABELLED: The first seven members of the proprotein convertase (PC) family activate protein precursors by cleavage after basic residues. While PC7 has no known specific substrates, it shows redundancy with other PCs. A genome-wide association study suggested that circulating levels of shed human transferrin receptor 1 (hTfR1) are regulated by PC7. We thus examined whether hTfR1 constitutes a specific substrate for PC7. Coexpression of hTfR1 with PCs in several cell lines indicated that PC7 is the only convertase that sheds this receptor into the medium. Site-directed mutagenesis showed that cleavage occurs at the unusual site KTECER100 ↓LA, in which the P1 Arg100 and P6 Lys95 are critical. Pharmacological treatments revealed that shedding of hTfR1 by PC7 requires endocytosis into acidic clathrin-coated vesicles. A PC7 chimera, in which the transmembrane domain and the cytosolic tail of PC7 were replaced by that of the convertase furin, lost its ability to cleave the receptor, demonstrating the importance of these domains in the regulation of PC7 function. Analysis of primary hepatocytes from mice lacking furin, PC5, PACE4, or PC7 revealed that hepcidin, which limits iron availability in the circulation, is specifically generated by furin and not by PC7. Finally, depletion of iron in the medium of hepatoma cell lines incubated with the iron chelator desferrioxamine resulted in PC7 down-regulation. CONCLUSION: Among the PC family members, only furin activates hepcidin in hepatocytes, and uniquely the full-length membrane-bound PC7 can directly shed hTfR1 by cleavage at Arg100 ↓. Our results support the notion that, when iron is limiting, hTfR1 levels increase at least in part by way of the down-regulation of PC7 expression. (HEPATOLOGY 2013;).


Assuntos
Antígenos CD/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Furina/metabolismo , Hepatócitos/metabolismo , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Subtilisinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Regulação para Baixo , Endossomos/metabolismo , Células HEK293 , Células Hep G2 , Hepcidinas , Humanos , Camundongos , Estrutura Terciária de Proteína
16.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786080

RESUMO

PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.


Assuntos
Antígenos HLA-C , Proteína da Hemocromatose , Lisossomos , Pró-Proteína Convertase 9 , Transporte Proteico , Receptores de LDL , Humanos , Receptores de LDL/metabolismo , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Proteína da Hemocromatose/metabolismo , Proteína da Hemocromatose/genética , Antígenos HLA-C/metabolismo , Lisossomos/metabolismo , Células HEK293 , Ligação Proteica
17.
Metabolism ; 150: 155736, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967646

RESUMO

BACKGROUND: Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS: We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS: Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and ß-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS: Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Subtilisina/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Pró-Proteína Convertases/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo
19.
Viruses ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851576

RESUMO

Proprotein convertases activate various envelope glycoproteins and participate in cellular entry of many viruses. We recently showed that the convertase furin is critical for the infectivity of SARS-CoV-2, which requires cleavage of its spike protein (S) at two sites: S1/S2 and S2'. This study investigates the implication of the two cholesterol-regulating convertases SKI-1 and PCSK9 in SARS-CoV-2 entry. The assays used were cell-to-cell fusion in HeLa cells and pseudoparticle entry into Calu-3 cells. SKI-1 increased cell-to-cell fusion by enhancing the activation of SREBP-2, whereas PCSK9 reduced cell-to-cell fusion by promoting the cellular degradation of ACE2. SKI-1 activity led to enhanced S2' formation, which was attributed to increased metalloprotease activity as a response to enhanced cholesterol levels via activated SREBP-2. However, high metalloprotease activity resulted in the shedding of S2' into a new C-terminal fragment (S2″), leading to reduced cell-to-cell fusion. Indeed, S-mutants that increase S2″ formation abolished S2' and cell-to-cell fusion, as well as pseudoparticle entry, indicating that the formation of S2″ prevents SARS-CoV-2 cell-to-cell fusion and entry. We next demonstrated that PCSK9 enhanced the cellular degradation of ACE2, thereby reducing cell-to-cell fusion. However, different from the LDLR, a canonical target of PCSK9, the C-terminal CHRD domain of PCSK9 is dispensable for the PCSK9-induced degradation of ACE2. Molecular modeling suggested the binding of ACE2 to the Pro/Catalytic domains of mature PCSK9. Thus, both cholesterol-regulating convertases SKI-1 and PCSK9 can modulate SARS-CoV-2 entry via two independent mechanisms.


Assuntos
COVID-19 , Pró-Proteína Convertase 9 , Humanos , Enzima de Conversão de Angiotensina 2 , Fusão Celular , Células HeLa , Metaloproteases , Pró-Proteína Convertase 9/genética , SARS-CoV-2 , Proteína de Ligação a Elemento Regulador de Esterol 1
20.
J Biol Chem ; 286(33): 29063-29073, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21700711

RESUMO

The basic amino acid-specific proprotein convertase 5/6 (PC5/6) is an essential secretory protease, as knock-out mice die at birth and exhibit multiple homeotic transformation defects, including impaired bone morphogenesis and lung structure. Some of the observed defects were attributed to impaired processing of the TGFß-like growth differentiating factor 11 precursor (proGdf11). In this work we present evidence that the latent TGFß-binding proteins 2 and 3 (LTBP-2 and -3) inhibit the extracellular processing of proGdf11 by PC5/6A. This is partly due to the binding of LTBPs in the endoplasmic reticulum to the zymogen proPC5/6A, thus allowing the complex to exit the endoplasmic reticulum and be sequestered as an inactive zymogen in the extracellular matrix but not at the cell surface. This results in lower levels of PC5/6A in the media, without affecting those of PACE4, Furin, or a soluble form of PC7. The secreted soluble protease-specific activity of PC5/6A or a variant lacking the C-terminal Cys-rich domain (PC5/6-ΔCRD) is significantly decreased when co-expressed with LTBPs in cells. A similar enzymatic inhibition seems to apply to PACE4 and Furin. In situ hybridization analyses revealed extensive co-localization of PC5/6 and LTBP-3 mRNAs in mice at embryonic day 15.5 and post partum day 1. In conclusion, this is the first time that a zymogen of the proprotein convertases was shown to exit the endoplasmic reticulum in the presence of LTBPs, representing a potential novel mechanism for the regulation of PC5/6A activity, e.g. in tissues such as bone and lung where LTBP-3 and PC5/6 co-localize.


Assuntos
Proteínas de Ligação a TGF-beta Latente/metabolismo , Pró-Proteína Convertase 5/metabolismo , Animais , Células COS , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Camundongos , Pró-Proteína Convertase 5/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA