RESUMO
OBJECTIVES: The use of cephalosporins combined with clavulanate for the treatment of ESBL-harbouring Enterobacteriaceae has been scarcely described. We aimed to describe the effect of different concentrations of clavulanate in the MIC of cefixime and ceftibuten of ESBL-producing Escherichia coli and Klebsiella pneumoniae. METHODS: ESBL-producing E. coli and K. pneumoniae isolates were studied. Fixed concentrations of cefixime and ceftibuten (ranges of 32-0.25 and 64-0.5 ng/ml, respectively) were used. Combinations of cefixime/clavulanate and ceftibuten/clavulanate in different ratios (1:0, 1:1, 2:1, 4:1, 8:1, 16:1, 32:1) were tested. MIC were determined by broth microdilution. RESULTS: A total of 6 ESBL-producing E. coli, 6 ESBL-producing K. pneumoniae and 2 control E. coli were tested. When different quantities of clavulanate were added to cefixime and ceftibuten, greater than two-fold decreases in the MIC were observed. When testing the 1:1 cefixime/clavulanate ratio, 10/12 isolates were susceptible. When the ratios 2:1, 4:1, 8:1 and 16:1 were tested, susceptibility was noted for 9/12, 8/12, 4/12 and 5/12 isolates, respectively. Only 2/12 K. pneumoniae isolates were susceptible when the ratio 32:1 was tested. When testing ceftibuten/clavulanate, all isolates remained susceptible across all experiments. CONCLUSIONS: Clavulanic acid has a favourable effect in reducing the MIC of cefixime and ceftibuten in isolates of ESBL-producing E. coli and K. pneumoniae. Combining clavulanate with ceftibuten or cefixime could be a useful treatment strategy.
Assuntos
Antibacterianos , Cefixima , Ceftibuteno , Ácido Clavulânico , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Ácido Clavulânico/farmacologia , Antibacterianos/farmacologia , Humanos , beta-Lactamases/metabolismo , Cefixima/farmacologia , Ceftibuteno/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Cefalosporinas/farmacologiaRESUMO
Introduction. Cancer patients with Clostridioides difficile infection (CDI) are at a higher risk for adverse outcomes. In addition, a high prevalence of Clostridioides difficile asymptomatic colonization (CDAC) has been reported in this vulnerable population.Gap Statement. The molecular characteristics and potential role of CDAC in healthcare-related transmission in the cancer population have been poorly explored.Aim. We aimed to compare the molecular and genotypic characteristics of C. difficile isolates from cancer patients with CDAC and CDI.Method. We conducted a prospective cohort study of cancer patients with CDAC or CDI from a referral centre. Molecular characterization, typification and tcdC gene expression of isolates were performed.Results. The hospital-onset and community-onset healthcare facility-associated CDI rates were 4.5 cases/10â000 patient-days and 1.4 cases/1â000 admissions during the study period. Fifty-one C. difficile strains were isolated: 37 (72â%) and 14 (28â%) from patients with CDI or CDAC, respectively. All isolates from symptomatic patients were tcdA+/tcdB+, and four (10â%) were ctdA+/ctdB+. In the CDAC group, 10 (71â%) isolates were toxigenic, and none were ctdA+/ctdB+. The Δ18 in-frame tcdC deletion and two transition mutations were found in five isolates. After bacterial typing, 60â% of toxigenic isolates from asymptomatic carriers were clonal to those from patients with C. difficile-associated diarrhoea. No NAP1/027/BI strains were detected.Conclusions. We found a clonal association between C. difficile isolates from patients with CDAC and CDI. Studies are needed to evaluate the potential role of asymptomatic carriers in the dynamics of nosocomial transmission to support infection control measures and reduce the burden of CDI in high-risk groups.
Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Neoplasias , Humanos , Infecções Assintomáticas/epidemiologia , Clostridioides difficile/genética , Genótipo , Estudos Prospectivos , Neoplasias/complicações , Infecções por Clostridium/epidemiologiaRESUMO
INTRODUCTION: Infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) are a significant cause of mortality and represent a serious challenge to health systems. The early identification of mortality predictors could guide appropriate treatment and follow-up. We aimed to identify the factors associated with 90-day all-cause mortality in patients with CR-GNB infections. METHODS: We conducted a cohort study from 1 January 2019 to 30 April 2022. The primary outcome was death from any cause during the first 90 days after the date of the first CR-GNB-positive culture. Secondary outcomes included infection relapse, invasive mechanical ventilation during follow-up, need for additional source control, acute kidney injury, Clostridioides difficile infection, and all-cause hospital admission after initial discharge. Bivariate and multivariate Cox-proportional hazards models were constructed to identify the factors independently associated with 90-day all-cause mortality. RESULTS: A total of 225 patients with CR-GNB infections were included. Death occurred in 76 (34%) cases. The most-reported comorbidities were immunosuppression (43%), arterial hypertension (35%), and COVID-19 (25%). The median length of stay in survivors was 18 days (IQR 10-34). Mechanical ventilation and ICU admission after diagnosis occurred in 8% and 11% of cases, respectively. Both infection relapse and rehospitalisation occurred in 18% of cases. C. difficile infection was diagnosed in 4% of cases. Acute kidney injury was documented in 22% of patients. Mechanical ventilation after diagnosis, ICU admission after diagnosis, and acute kidney injury in the first ten days of appropriate treatment were more frequently reported among non-survivors. In the multivariate analysis, age (HR 1.19 (95%CI 1.00-1.83)), immunosuppression (HR 1.84 (95%CI 1.06-3.18)), and septic shock at diagnosis (HR 2.40 (95% 1.41-4.08)) had an independent association with death during the first 90 days after the CR-GNB infection diagnosis. Receiving antibiogram-guided appropriate treatment was independently associated with a lower risk of death (HR 0.25 (95%CI 0.14-0.46)). CONCLUSIONS: The presence of advanced age, immunosuppression, septic shock at diagnosis, and inappropriate treatment are associated with higher 90-day all-cause mortality in hospitalised patients with infections due to CR-GNB. Recognition of the risk factors for adverse outcomes could further assist in patient care and the design of interventional studies that address the severe and widespread problem that is carbapenem resistance.
RESUMO
Emergency department areas were repurposed as intensive care units (ICUs) for patients with acute respiratory distress syndrome during the initial months of the coronavirus disease 2019 (COVID-19) pandemic. We describe an outbreak of New Delhi metallo-ß-lactamase 1 (NDM-1)-producing Escherichia coli infections in critically ill COVID-19 patients admitted to one of the repurposed units. Seven patients developed infections (6 ventilator-associated pneumonia [VAP] and 1 urinary tract infection [UTI]) due to carbapenem-resistant E. coli, and only two survived. Five of the affected patients and four additional patients had rectal carriage of carbapenem-resistant E. coli. The E. coli strain from the affected patients corresponded to a single sequence type. Rectal screening identified isolates of two other sequence types bearing blaNDM-1. Isolates of all three sequence types harbored an IncFII plasmid. The plasmid was confirmed to carry blaNDM-1 through conjugation. An outbreak of clonal NDM-1-producing E. coli isolates and subsequent dissemination of NDM-1 through mobile elements to other E. coli strains occurred after hospital conversion during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This emphasizes the need for infection control practices in surge scenarios. IMPORTANCE The SARS-CoV-2 pandemic has resulted in a surge of critically ill patients. Hospitals have had to adapt to the demand by repurposing areas as intensive care units. This has resulted in high workload and disruption of usual hospital workflows. Surge capacity guidelines and pandemic response plans do not contemplate how to limit collateral damage from issues like hospital-acquired infections. It is vital to ensure quality of care in surge scenarios.
Assuntos
Infecção Hospitalar/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , beta-Lactamases/metabolismo , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/virologia , Conjugação Genética , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Escherichia coli/classificação , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/mortalidade , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Plasmídeos/genética , SARS-CoV-2/fisiologia , Centros de Atenção Terciária/estatística & dados numéricos , beta-Lactamases/genéticaRESUMO
AIM: This report presents phenotypic and genetic data on the prevalence and characteristics of extended-spectrum ß-lactamases (ESBLs) and representative carbapenemases-producing Gram-negative species in Mexico. MATERIAL AND METHODS: A total of 52 centers participated, 43 hospital-based laboratories and 9 external laboratories. The distribution of antimicrobial resistance data for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, Acinetobacter baumannii complex, and Pseudomonas aeruginosa in selected clinical specimens from January 1 to March 31, 2020 was analyzed using the WHONET 5.6 platform. The following clinical isolates recovered from selected specimens were included: carbapenem-resistant Enterobacteriaceae, ESBL or carbapenem-resistant E. coli, and K. pneumoniae, carbapenem-resistant A. baumannii complex, and P. aeruginosa. Strains were genotyped to detect ESBL and/or carbapenemase-encoding genes. RESULTS: Among blood isolates, A. baumannii complex showed more than 68% resistance for all antibiotics tested, and among Enterobacteria, E. cloacae complex showed higher resistance to carbapenems. A. baumannii complex showed a higher resistance pattern for respiratory specimens, with only amikacin having a resistance lower than 70%. Among K. pneumoniae isolates, blaTEM, blaSHV, and blaCTX were detected in 68.79%, 72.3%, and 91.9% of isolates, respectively. Among E. coli isolates, blaTEM, blaSHV, and blaCTX were detected in 20.8%, 4.53%, and 85.7% isolates, respectively. For both species, the most frequent genotype was blaCTX-M-15. Among Enterobacteriaceae, the most frequently detected carbapenemase-encoding gene was blaNDM-1 (81.5%), followed by blaOXA-232 (14.8%) and blaoxa-181(7.4%), in A. baumannii was blaOXA-24 (76%) and in P. aeruginosa, was blaIMP (25.3%), followed by blaGES and blaVIM (13.1% each). CONCLUSION: Our study reports that NDM-1 is the most frequent carbapenemase-encoding gene in Mexico in Enterobacteriaceae with the circulation of the oxacillinase genes 181 and 232. KPC, in contrast to other countries in Latin America and the USA, is a rare occurrence. Additionally, a high circulation of ESBL blaCTX-M-15 exists in both E. coli and K. pneumoniae.
Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Resistência beta-Lactâmica/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/uso terapêutico , Genes Bacterianos , Genótipo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , México/epidemiologia , Testes de Sensibilidade Microbiana , Fenótipo , beta-Lactamases/genéticaRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) is considered an opportunistic pathogen in humans and is mainly associated with healthcare-associated infections (HCAIs). This bacterium colonizes the skin and mucous membranes of healthy people and causes frequent hospital outbreaks. The aim of this study was to perform molecular typing of the staphylococcal cassette chromosome mec (SCCmec) and agr loci as wells as to establish the pulsotypes and clonal complexes (CCs) for MRSA and methicillin-sensitive S. aureus (MSSA) outbreaks associated with the operating room (OR) at a pediatric hospital. Twenty-five clinical strains of S. aureus (19 MRSA and 6 MSSA strains) were recovered from the outbreak (patients, anesthesia equipment, and nasopharyngeal exudates from external service anesthesia technicians). These clinical S. aureus strains were mainly resistant to benzylpenicillin (100%) and erythromycin (84%) and were susceptible to vancomycin and nitrofurantoin. The SCCmec type II was amplified in 84% of the S. aureus strains, and the most frequent type of the agr locus was agrII, which was amplified in 72% of the strains; however, the agrI and agrIII genes were mainly detected in MSSA strains. A pulsed-field gel electrophoresis (PFGE) analysis grouped the 25 strains into 16 pulsotypes (P), the most frequent of which was P1, including 10 MRSA strains related to the anesthesia equipment, external service anesthesia technicians, and hospitalized patients. Multilocus sequence typing (MLST) identified 15 sequence types (STs) distributed in nine CCs. The most prevalent ST was ST1011, belonging to CC5, which was associated with the SCCmec type II and agrII type. We postulate that the external service anesthesia technicians were MRSA carriers and that these strains were indirectly transmitted from the contaminated anesthesia equipment that was inappropriately disinfected. Finally, the MRSA outbreak was controlled when the anesthesia equipment disinfection was improved and hand hygiene was reinforced.
RESUMO
Background: Klebsiella pneumoniae is considered an opportunistic pathogen associated with nosocomial infections occurring mainly in pediatric patients, such as premature infants placed in intensive care units. The aim of this study was to characterize K. pneumoniae strains isolated from different clinical sources based on their resistance to antibiotics and the presence of virulence factors associated with their persistence in the hospital environment. Methods: Fifty clinical strains of K. pneumoniae isolated from urine, blood, catheters, and cerebrospinal fluid sources were characterized. Susceptibility testing of antibiotics was performed by the Kirby-Bauer method (Clinical Laboratory Standards Institute, 2010). The ability to form a biofilm was determined by the 96-well microplate method. Capsule and fimbrial structures were visualized by transmission electron microscopy (TEM). Adherence was evaluated on A549 and HT29 cells. Assessment for the presence and expression of the ecpA, fimH, and mrkA genes was performed by PCR and RT-PCR. Results: Clinical strains of K. pneumoniae were isolated from 48% of urine, 24% of blood, 18% of catheters, and 10% of cerebrospinal fluid. Ninety-two percent of the strains showed resistance to cefpodoxime, whereas few strains showed resistance to imipenem and meropenem (4 and 2%, respectively). The extended spectrum-type beta-lactamase (ESBL) phenotype was identified in 97% of the strains positive for resistance to third-generation cephalosporins. In addition, 88% of the strains were multidrug resistant. All strains were able to form biofilms. Capsule and fimbirial structures were visualized by TEM. Based on our adhesion assays, the A549 cell line was more permissive to K. pneumoniae strains than the HT-29 cell line. K. pneumoniae strains amplified and expressed ecpA (100/70%), fimH (98/2%), and mrkA (84/48%) genes, respectively. Conclusion: The K. pneumoniae strains exhibited features that allowed them to survive in the hospital environment (formation of biofilm) and resist antimicrobial therapy (multidrug resistant MDR strains). These strains also possessed a capsule, adhesive properties, and expression of genes encoding colonization factors that favor the selection and persistence of these strains in hospitals.