Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Acta Pharmacol Sin ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684799

RESUMO

Epilepsy is a chronic and debilitating neurological disorder, known for the occurrence of spontaneous and recurrent seizures. Despite the availability of antiseizure drugs, 30% of people with epilepsy experience uncontrolled seizures and drug resistance, evidencing that new therapeutic options are required. The process of epileptogenesis involves the development and expansion of tissue capable of generating spontaneous recurrent seizures, during which numerous events take place, namely blood-brain barrier (BBB) dysfunction, and neuroinflammation. The consequent cerebrovascular dysfunction results in a lower seizure threshold, seizure recurrence, and chronic epilepsy. This suggests that improving cerebrovascular health may interrupt the pathological cycle responsible for disease development and progression. Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors, encountered in brain endothelial cells, glial cells, and neurons. KLFs are known to regulate vascular function and changes in their expression are associated with neuroinflammation and human diseases, including epilepsy. Hence, KLFs have demonstrated various roles in cerebrovascular dysfunction and epileptogenesis. This review critically discusses the purpose of KLFs in epileptogenic mechanisms and BBB dysfunction, as well as the potential of their pharmacological modulation as therapeutic approach for epilepsy treatment.

2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000036

RESUMO

Air pollution, a growing concern for public health, has been linked to various respiratory and cardiovascular diseases. Emerging evidence also suggests a link between exposure to air pollutants and neurodegenerative diseases, particularly Alzheimer's disease (AD). This review explores the composition and sources of air pollutants, including particulate matter, gases, persistent organic pollutants, and heavy metals. The pathophysiology of AD is briefly discussed, highlighting the role of beta-amyloid plaques, neurofibrillary tangles, and genetic factors. This article also examines how air pollutants reach the brain and exert their detrimental effects, delving into the neurotoxicity of air pollutants. The molecular mechanisms linking air pollution to neurodegeneration are explored in detail, focusing on oxidative stress, neuroinflammation, and protein aggregation. Preclinical studies, including in vitro experiments and animal models, provide evidence for the direct effects of pollutants on neuronal cells, glial cells, and the blood-brain barrier. Epidemiological studies have reported associations between exposure to air pollution and an increased risk of AD and cognitive decline. The growing body of evidence supporting air pollution as a modifiable risk factor for AD underscores the importance of considering environmental factors in the etiology and progression of neurodegenerative diseases, in the face of worsening global air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença de Alzheimer , Humanos , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/toxicidade , Fatores de Risco , Animais , Material Particulado/efeitos adversos , Estresse Oxidativo , Doenças Neurodegenerativas/etiologia , Exposição Ambiental/efeitos adversos , Encéfalo/patologia , Encéfalo/metabolismo
3.
J Nanobiotechnology ; 21(1): 54, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788617

RESUMO

In the clinical course of Alzheimer's disease (AD) development, the dementia phase is commonly preceded by a prodromal AD phase, which is mainly characterized by reaching the highest levels of Aß and p-tau-mediated neuronal injury and a mild cognitive impairment (MCI) clinical status. Because of that, most AD cases are diagnosed when neuronal damage is already established and irreversible. Therefore, a differential diagnosis of MCI causes in these prodromal stages is one of the greatest challenges for clinicians. Blood biomarkers are emerging as desirable tools for pre-screening purposes, but the current results are still being analyzed and much more data is needed to be implemented in clinical practice. Because of that, plasma extracellular vesicles (pEVs) are gaining popularity as a new source of biomarkers for the early stages of AD development. To identify an exosome proteomics signature linked to prodromal AD, we performed a cross-sectional study in a cohort of early-onset MCI (EOMCI) patients in which 184 biomarkers were measured in pEVs, cerebrospinal fluid (CSF), and plasma samples using multiplex PEA technology of Olink© proteomics. The obtained results showed that proteins measured in pEVs from EOMCI patients with established amyloidosis correlated with CSF p-tau181 levels, brain ventricle volume changes, brain hyperintensities, and MMSE scores. In addition, the correlations of pEVs proteins with different parameters distinguished between EOMCI Aß( +) and Aß(-) patients, whereas the CSF or plasma proteome did not. In conclusion, our findings suggest that pEVs may be able to provide information regarding the initial amyloidotic changes of AD. Circulating exosomes may acquire a pathological protein signature of AD before raw plasma, becoming potential biomarkers for identifying subjects at the earliest stages of AD development.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vesículas Extracelulares , Humanos , Peptídeos beta-Amiloides , Estudos Transversais , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/diagnóstico , Proteínas tau/líquido cefalorraquidiano , Vesículas Extracelulares/metabolismo , Biomarcadores , Fragmentos de Peptídeos
4.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762479

RESUMO

Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.


Assuntos
Doença de Alzheimer , Chalconas , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Chalconas/farmacologia , Chalconas/uso terapêutico
5.
Mol Med ; 28(1): 48, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508978

RESUMO

BACKGROUND AND AIM: The appearance of alterations in normal metabolic activity has been increasingly considered a risk factor for the development of sporadic and late-onset neurodegenerative diseases. In this report, we induced chronic metabolic stress by feeding of a high-fat diet (HFD) in order to study its consequences in cognition. We also studied the effects of a loss of function of isoforms 1 and 3 of the c-Jun N-terminal Kinases (JNK), stress and cell death response elements. METHODS: Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice at 9 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-GTT and IP­ITT) were performed to evaluate peripheral biometrics. Additionally, cognitive behavioral tests and analysis of spine density were performed to assess cognitive function. Molecular studies were carried out to confirm the effects of metabolic stressors in the hippocampus relative to cognitive loss. RESULTS: Our studies demonstrated that HFD in Jnk3-/- lead to synergetic responses. Loss of function of JNK3 led to increased body weight, especially when exposed to an HFD and they had significantly decreased response to insulin. These mice also showed increased stress in the endoplasmic reticulum and diminished cognitive capacity. However, loss of function of JNK1 promoted normal or heightened energetic metabolism and preserved cognitive function even when chronically metabolically stressed. CONCLUSIONS: Downregulation of JNK3 does not seem to be a suitable target for the modulation of energetic-cognitive dysregulations while loss of function of JNK1 seems to promote a good metabolic-cognitive profile, just like resistance to the negative effects of chronic feeding with HFD.


Assuntos
Hipocampo , Proteína Quinase 8 Ativada por Mitógeno , Animais , Peso Corporal , Cognição , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo
6.
Nutr Neurosci ; 25(12): 2627-2637, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34789070

RESUMO

Deregulations like the loss of sensitivity to insulin (insulin resistance) and chronic inflammation are alterations very commonly found in sporadic forms of neurodegenerative pathologies. Thus, finding strategies to protect against them, may lead to a reduction in the incidence and/or affectation of these pathologies. The grape seed-derived proanthocyanidins extract (GSPE) is a mixture of compounds highly enriched in polyphenols and flavonoids that have shown to have a wide range of therapeutic benefits due to their antioxidant and anti-inflammatory properties. OBJECTIVES: This study aimed to assess the protective effects of a short pre-treatment of GSPE in the hippocampus against a prolonged feeding with cafeteria diet. METHODS: GSPE was administered for 10 days followed by 12 weeks of cafeteria diet. We analyzed transcriptional activity of genes and protein expression of key mediators of neurodegeneration in brain samples. RESULTS: Results indicated that GSPE was able to protect against cellular damage through the activation of AKT, as well as promote the maintenance of mitochondrial function by conserving the OXPHOS complexes and upregulating the antioxidant SOD. DISCUSSION: We observed that GSPE decreased inflammatory activation as observed through the downregulation of JNK, IL6 and TNFα, just like the reduction in reactive profile of astrocytes. Overall, the data presented here offers an interesting and hopeful initial step for future long-term studies on the beneficial effects of a supplementation of common diets with polyphenol and flavonoid substances for the amelioration of typical early hallmarks of neurodegeneration.


Assuntos
Proantocianidinas , Ratos , Animais , Proantocianidinas/farmacologia , Antioxidantes/farmacologia , Ratos Wistar , Dieta , Polifenóis/farmacologia , Hipocampo , Mitocôndrias
7.
J Nanobiotechnology ; 19(1): 122, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926475

RESUMO

Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Biomarcadores/metabolismo , Nanomedicina/métodos , Envelhecimento , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas Metálicas , Estresse Oxidativo
8.
J Nanobiotechnology ; 18(1): 156, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129333

RESUMO

Infectious diseases kill over 17 million people a year, among which bacterial infections stand out. From all the bacterial infections, tuberculosis, diarrhoea, meningitis, pneumonia, sexual transmission diseases and nosocomial infections are the most severe bacterial infections, which affect millions of people worldwide. Moreover, the indiscriminate use of antibiotic drugs in the last decades has triggered an increasing multiple resistance towards these drugs, which represent a serious global socioeconomic and public health risk. It is estimated that 33,000 and 35,000 people die yearly in Europe and the United States, respectively, as a direct result of antimicrobial resistance. For all these reasons, there is an emerging need to find novel alternatives to overcome these issues and reduced the morbidity and mortality associated to bacterial infectious diseases. In that sense, nanotechnological approaches, especially smart polymeric nanoparticles, has wrought a revolution in this field, providing an innovative therapeutic alternative able to improve the limitations encountered in available treatments and capable to be effective by theirselves. In this review, we examine the current status of most dangerous human infections, together with an in-depth discussion of the role of nanomedicine to overcome the current disadvantages, and specifically the most recent and innovative studies involving polymeric nanoparticles against most common bacterial infections of the human body.


Assuntos
Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Nanocápsulas/química , Polímeros/química , Animais , Antibacterianos/farmacologia , Materiais Biomiméticos , Composição de Medicamentos , Humanos , Nanomedicina , Neisseria meningitidis , Pele/efeitos dos fármacos
9.
J Cell Physiol ; 234(5): 7395-7410, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370540

RESUMO

We have previously shown that knockout of fibroblast growth factor-2 (FGF-2) and potential compensatory effects of other growth factors result in amelioration of disease symptoms in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive neurological disorder leading to degeneration of cortical, brain stem, and spinal motor neurons followed by subsequent denervation and muscle wasting. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for approximately 20% of familial ALS cases and SOD1 mutant mice still are among the models best mimicking clinical and neuropathological characteristics of ALS. The aim of the present study was a thorough characterization of FGF-2 and other growth factors and signaling effectors in vivo in the SOD1G93A mouse model. We observed tissue-specific opposing gene regulation of FGF-2 and overall dysregulation of other growth factors, which in the gastrocnemius muscle was associated with reduced downstream extracellular-signal-regulated kinases (ERK) and protein kinase B (AKT) activation. To further investigate whether the effects of FGF-2 on motor neuron death are mediated by glial cells, astrocytes lacking FGF-2 were cocultured together with mutant SOD1 G93A motor neurons. FGF-2 had an impact on motor neuron maturation indicating that astrocytic FGF-2 affects motor neurons at a developmental stage. Moreover, neuronal gene expression patterns showed FGF-2- and SOD1 G93A -dependent changes in ciliary neurotrophic factor, glial-cell-line-derived neurotrophic factor, and ERK2, implying a potential involvement in ALS pathogenesis before the onset of clinical symptoms.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Astrócitos/enzimologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neurônios Motores/enzimologia , Músculo Esquelético/enzimologia , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/deficiência , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/patologia , Mutação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/genética
10.
J Neurochem ; 149(2): 255-268, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30734928

RESUMO

Insulin resistance has negative consequences on the physiological functioning of the nervous system. The appearance of type 3 diabetes in the brain leads to the development of the sporadic form of Alzheimer's disease. The c-Jun N-terminal kinases (JNK), a subfamily of the Mitogen Activated Protein Kinases, are enzymes composed by three different isoforms with differential modulatory activity against the insulin receptor (IR) and its substrate. This research focused on understanding the regulatory role of JNK2 on the IR, as well as study the effect of a high-fat diet (HFD) in the brain. Our observations determined how JNK2 ablation did not induce compensatory responses in the expression of the other isoforms but led to an increase in JNKs total activity. HFD-fed animals also showed an increased activity profile of the JNKs. These animals also displayed endoplasmic reticulum stress and up-regulation of the protein tyrosine phosphatase 1B (PTP1B) and the suppressor of cytokine signalling 3 protein. Consequently, a reduction in insulin sensitivity was detected and it is correlated with a decrease on the signalling of the IR. Moreover, cognitive impairment was observed in all groups but only wild-type genotype animals fed with HFD showed neuroinflammatory responses. In conclusion, HFD and JNK2 absence cause alterations in normal cognitive activity by altering the signalling of the IR. These affectations are related to the appearance of endoplasmic reticulum stress and an increase in the levels of inhibitory proteins like PTP1B and suppressor of cytokine signalling 3 protein. Cover Image for this issue: doi: 10.1111/jnc.14502.


Assuntos
Encéfalo/metabolismo , Cognição/fisiologia , Dieta Hiperlipídica/efeitos adversos , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Receptor de Insulina/metabolismo , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Eur J Neurosci ; 50(6): 3028-3045, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30883949

RESUMO

We have previously shown that total knockout of fibroblast growth factor-2 (FGF-2) results in prolonged survival and improved motor performance in superoxide dismutase 1 (SOD1G93A ) mutant mice, the most widely used animal model of the fatal adult onset motor neuron disease amyotrophic lateral sclerosis (ALS). Moreover, we found differential expression of growth factors in SOD1G93A mice, with distinct regulation patterns of FGF-2 in spinal cord and muscle tissue. Within the present study we aimed to characterize FGF-2-isoform specific effects on survival, motor performance as well as gene expression patterns predominantly in muscle tissue by generating double mutant SOD1G93A FGF-2 high molecular weight- and SOD1G93A FGF-2 low molecular weight-knockout mice. While isoform specific depletion was not beneficial regarding survival or motor performance of double mutant mice, we found isoform-dependent differential gene expression of epidermal growth factor (EGF) in the muscle of SOD1G93A FGF-2 low molecular weight knockout mice compared to single mutant SOD1G93A mice. This significant downregulation of EGF in the muscle tissue of double mutant SOD1G93A FGF-2 low molecular weight knockout mice implies that FGF-2 low molecular weight knockout (or the presence of the FGF-2 high molecular weight isoform) selectively impacts EGF gene expression in ALS muscle tissue.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fator 2 de Crescimento de Fibroblastos/genética , Longevidade/genética , Isoformas de Proteínas/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Isoformas de Proteínas/metabolismo , Superóxido Dismutase-1/metabolismo
12.
Pharmacol Res ; 145: 104255, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31075308

RESUMO

After decades of research, the molecular neuropathology of Alzheimer's disease (AD) is still one of the hot topics in biomedical sciences. Some studies suggest that soluble amyloid ß (Aß) oligomers act as causative agents in the development of AD and could be initiators of its complex neurodegenerative cascade. On the other hand, there is also evidence pointing to Aß oligomers as mere aggravators, with an arguable role in the origin of the disease. In this line of research, the relative contribution of soluble Aß oligomers to neuronal damage associated with metabolic disorders such as Type 2 Diabetes Mellitus (T2DM) and obesity is being actively investigated. Some authors have proposed the endoplasmic reticulum (ER) stress and the induction of the unfolded protein response (UPR) as important mechanisms leading to an increase in Aß production and the activation of neuroinflammatory processes. Following this line of thought, these mechanisms could also cause cognitive impairment. The present review summarizes the current understanding on the neuropathological role of Aß associated with metabolic alterations induced by an obesogenic high fat diet (HFD) intake. It is believed that the combination of these two elements has a synergic effect, leading to the impairement of ER and mitochondrial functions, glial reactivity status alteration and inhibition of insulin receptor (IR) signalling. All these metabolic alterations would favour neuronal malfunction and, eventually, neuronal death by apoptosis, hence causing cognitive impairment and laying the foundations for late-onset AD (LOAD). Moreover, since drugs enhancing the activation of cerebral insulin pathway can constitute a suitable strategy for the prevention of AD, we also discuss the scope of therapeutic approaches such as intranasal administration of insulin in clinical trials with AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Ceramidas/metabolismo , Disfunção Cognitiva/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Obesidade/complicações
13.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905931

RESUMO

Previous studies have reported that the regulatory function of the different c-Jun N-terminal kinases isoforms (JNK1, JNK2, and JNK3) play an essential role in neurological disorders, such as epilepsy and metabolic-cognitive alterations. Accordingly, JNKs have emerged as suitable therapeutic strategies. In fact, it has been demonstrated that some unspecific JNK inhibitors exert antidiabetic and neuroprotective effects, albeit they usually show high toxicity or lack therapeutic value. In this sense, natural specific JNK inhibitors, such as Licochalcone A, are promising candidates. Nonetheless, research on the understanding of the role of each of the JNKs remains mandatory in order to progress on the identification of new selective JNK isoform inhibitors. In the present review, a summary on the current gathered data on the role of JNKs in pathology is presented, as well as a discussion on their potential role in pathologies like epilepsy and metabolic-cognitive injury. Moreover, data on the effects of synthetic small molecule inhibitors that modulate JNK-dependent pathways in the brain and peripheral tissues is reviewed.


Assuntos
Disfunção Cognitiva/metabolismo , Epilepsia/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Epilepsia/patologia , Humanos , Hipoglicemiantes/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/antagonistas & inibidores , Isoformas de Proteínas
14.
Small ; 14(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29154484

RESUMO

Glaucoma is a multifactorial neurodegenerative disease associated with retinal ganglion cells (RGC) loss. Increasing reports of similarities in glaucoma and other neurodegenerative conditions have led to speculation that therapies for brain neurodegenerative disorders may also have potential as glaucoma therapies. Memantine is an N-methyl-d-aspartate (NMDA) antagonist approved for Alzheimer's disease treatment. Glutamate-induced excitotoxicity is implicated in glaucoma and NMDA receptor antagonism is advocated as a potential strategy for RGC preservation. This study describes the development of a topical formulation of memantine-loaded PLGA-PEG nanoparticles (MEM-NP) and investigates the efficacy of this formulation using a well-established glaucoma model. MEM-NPs <200 nm in diameter and incorporating 4 mg mL-1 of memantine were prepared with 0.35 mg mL-1 localized to the aqueous interior. In vitro assessment indicated sustained release from MEM-NPs and ex vivo ocular permeation studies demonstrated enhanced delivery. MEM-NPs were additionally found to be well tolerated in vitro (human retinoblastoma cells) and in vivo (Draize test). Finally, when applied topically in a rodent model of ocular hypertension for three weeks, MEM-NP eye drops were found to significantly (p < 0.0001) reduce RGC loss. These results suggest that topical MEM-NP is safe, well tolerated, and, most promisingly, neuroprotective in an experimental glaucoma model.


Assuntos
Glaucoma/tratamento farmacológico , Memantina/uso terapêutico , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Humanos , Memantina/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares da Retina , Retinoblastoma
15.
J Nanobiotechnology ; 16(1): 32, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587747

RESUMO

BACKGROUND: Memantine, drug approved for moderate to severe Alzheimer's disease, has not shown to be fully effective. In order to solve this issue, polylactic-co-glycolic (PLGA) nanoparticles could be a suitable solution to increase drug's action on the target site as well as decrease adverse effects. For these reason, Memantine was loaded in biodegradable PLGA nanoparticles, produced by double emulsion method and surface-coated with polyethylene glycol. MEM-PEG-PLGA nanoparticles (NPs) were aimed to target the blood-brain barrier (BBB) upon oral administration for the treatment of Alzheimer's disease. RESULTS: The production parameters were optimized by design of experiments. MEM-PEG-PLGA NPs showed a mean particle size below 200 nm (152.6 ± 0.5 nm), monomodal size distribution (polydispersity index, PI < 0.1) and negative surface charge (- 22.4 mV). Physicochemical characterization of NPs confirmed that the crystalline drug was dispersed inside the PLGA matrix. MEM-PEG-PLGA NPs were found to be non-cytotoxic on brain cell lines (bEnd.3 and astrocytes). Memantine followed a slower release profile from the NPs against the free drug solution, allowing to reduce drug administration frequency in vivo. Nanoparticles were able to cross BBB both in vitro and in vivo. Behavioral tests carried out on transgenic APPswe/PS1dE9 mice demonstrated to enhance the benefit of decreasing memory impairment when using MEM-PEG-PLGA NPs in comparison to the free drug solution. Histological studies confirmed that MEM-PEG-PLGA NPs reduced ß-amyloid plaques and the associated inflammation characteristic of Alzheimer's disease. CONCLUSIONS: Memantine NPs were suitable for Alzheimer's disease and more effective than the free drug.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antiparkinsonianos/farmacocinética , Disfunção Cognitiva/tratamento farmacológico , Portadores de Fármacos , Memantina/farmacocinética , Nanopartículas/química , Placa Amiloide/tratamento farmacológico , Administração Oral , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Antiparkinsonianos/química , Antiparkinsonianos/farmacologia , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Emulsões , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memantina/química , Memantina/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Tamanho da Partícula , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Poliésteres/química , Polietilenoglicóis/química
16.
Nanomedicine ; 14(4): 1073-1085, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29454994

RESUMO

Temporal lobe epilepsy is the most common type of pharmacoresistant epilepsy in adults. Epigallocatechin-3-gallate has aroused much interest because of its multiple therapeutic effects, but its instability compromises the potential effectiveness. PEGylated-PLGA nanoparticles of Epigallocatechin-3-gallate were designed to protect the drug and to increase the brain delivery. Nanoparticles were prepared by the double emulsion method and cytotoxicity, behavioral, Fluoro-Jade C, Iba1 and GFAP immunohistochemistry studies were carried out to determine their effectiveness. Nanoparticles showed an average size of 169 nm, monodisperse population, negative surface charge, encapsulation efficiency of 95% and sustained release profile. Cytotoxicity assays exhibited that these nanocarriers were non-toxic. Behavioral test showed that nanoparticles reduced most than free drug the number of epileptic episodes and their intensity. Neurotoxicity and immunohistochemistry studies confirmed a decrease in neuronal death and neuroinflammation. In conclusion, Epigallocatechin-3-gallate PEGylated-PLGA nanoparticles could be a suitable strategy for the treatment of temporal lobe epilepsy.


Assuntos
Catequina/análogos & derivados , Epilepsia do Lobo Temporal/tratamento farmacológico , Nanopartículas/química , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Catequina/química , Catequina/uso terapêutico , Portadores de Fármacos/química , Emulsões , Epilepsia do Lobo Temporal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Tamanho da Partícula , Ratos , Convulsões/tratamento farmacológico
17.
Nanomedicine ; 13(3): 1171-1182, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27986603

RESUMO

Dexibuprofen loaded pegylated poly(lactic-co-glycolic) nanospheres prepared by solvent diffusion method were designed to increase Dexibuprofen brain delivery reducing systemic side effects. Nanospheres exhibited a mean particle size around 200 nm (195.4 nm), monomodal population and negative surface charge. Drug loaded nanospheres showed a sustained release profile, allowing to modify the posology in vivo. Nanospheres were non-toxic neither in brain endothelial cells nor astrocytes and do not cause blood-brain barrier disruption. Nanospheres were able to partially cross the cells barrier and release the drug after co-culture in vitro experiments, increasing Dexibuprofen permeation coefficient. Behavioral tests performed in APPswe/PS1dE9 mice (mice model of familial Alzheimer's disease) showed that nanospheres reduce memory impairment more efficiently than the free drug. Developed nanospheres decrease brain inflammation leading to ß-amyloid plaques reduction. According to these results, chronical oral Dexibuprofen pegylated poly(lactic-co-glycolic) nanosystems could constitute a suitable strategy for the prevention of neurodegeneration.


Assuntos
Doença de Alzheimer/prevenção & controle , Anti-Inflamatórios não Esteroides/administração & dosagem , Portadores de Fármacos/química , Ibuprofeno/análogos & derivados , Nanosferas/química , Polietilenoglicóis/química , Poliglactina 910/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Ibuprofeno/administração & dosagem , Ibuprofeno/farmacocinética , Ibuprofeno/uso terapêutico , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
18.
Neural Plast ; 2016: 8501693, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881137

RESUMO

Alzheimer's disease (AD) currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aß) peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a) to reduce Aß production through the inhibition of ß and γ secretase enzymes and (b) to promote dissolution of existing cerebral Aß plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aß signalling, particularly at the synapse. Aß oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR) activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC). PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aß is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5). Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Animais , Benzamidas , Benzodioxóis/administração & dosagem , Benzodioxóis/uso terapêutico , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios/metabolismo , Piperidinas , Proteínas PrPC/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Piridinas , Quinazolinas/administração & dosagem , Quinazolinas/uso terapêutico , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/metabolismo , Sinapses/metabolismo , Tiazóis/administração & dosagem , Tiazóis/uso terapêutico
19.
Int Immunopharmacol ; 128: 111471, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199198

RESUMO

BACKGROUND: New strategies are urgently needed to manage and delay the development of Alzheimer's disease (AD). Neuroinflammation is a significant contributor to cognitive decline in neurodegenerative diseases, including AD. Angiotensin receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs) protect hypertensive patients against AD, but the cellular and molecular mechanisms underlying these effects remain unknown. In light of this, the protective effects of three ARBs and three ACEIs against neuroinflammation and cognitive decline were investigated through comprehensive pharmacologicalin vitro/in vivoscreening. METHODS: BV-2 microglia cells were exposed tolipopolysaccharide (LPS) and treated with ARBs and ACEIs to provide initial insights into the anti-inflammatory properties of the drugs. Subsequently, irbesartan was selected, and its efficacy was evaluated inC57/BL6 male miceintranasally administered with irbesartan and injected with LPS. Long-term memory and depressive-like behavior were evaluated; dendritic spines were measured as well as neuroinflammation, neurodegeneration and cognitive decline biomarkers. RESULTS: Irbesartan mitigated memory loss and depressive-like behavior in mice treated with LPS, probably because itincreased spine density, ameliorated synapsis dysfunction and activated the PI3K/AKT pathway. Irbesartan elevated the levels of hippocampalsuperoxide dismutase2 andglutathione peroxidaseandsuppressed LPS-induced astrogliosis. CONCLUSIONS: Overall, this study provides compelling evidence that multiple intranasal administrations of irbesartan can effectively prevent LPS-induced cognitive decline by activating pathways involved in neuroprotection and anti-inflammatory events. These findings underscore the potential of irbesartan as a preventive strategy against the development of AD and other neurodegenerative conditions associated with neuroinflammation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Camundongos , Animais , Irbesartana/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Lipopolissacarídeos/uso terapêutico , Fosfatidilinositol 3-Quinases , Doenças Neuroinflamatórias , Antagonistas de Receptores de Angiotensina , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
20.
Life Sci ; 350: 122750, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801982

RESUMO

C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Neurogênese , Humanos , Animais , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA