Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 466(3): 489-98, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25489924

RESUMO

Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here, we have screened for DUBs that preferentially cleave N-terminal Ub from protein substrates but do not act on Ub homopolymers. We show that members of the Ub C-terminal hydrolase (UCH) family of DUBs demonstrate this preference for N-terminal deubiquitylating activity as they are capable of cleaving N-terminal Ub from SUMO2 and Ube2W, while displaying no activity against any of the eight Ub linkage types. Surprisingly, this ability to cleave Ub from SUMO2 was 100 times more efficient for UCH-L3 when we deleted the unstructured N-terminus of SUMO2, demonstrating that UCH enzymes can cleave Ub from structured proteins. However, UCH-L3 could also cleave chemically synthesized isopeptide-linked Ub from lysine 11 (K11) of SUMO2 with similar efficiency, demonstrating that UCH DUB activity is not limited to peptide-linked Ub. These findings advance our understanding of the specificity of the UCH family of DUBs, which are strongly implicated in cancer and neurodegeneration but whose substrate preference has remained unclear. In addition, our findings suggest that the reversal of Ube2W-mediated N-terminal ubiquitylation may be one physiological role of UCH DUBs in vivo.


Assuntos
Proteínas de Escherichia coli/metabolismo , Polímeros/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Escherichia coli/química , Polímeros/química , Estrutura Terciária de Proteína , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitinação/fisiologia
2.
Nature ; 461(7262): 393-8, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19741609

RESUMO

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Assuntos
Genoma/genética , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas de Algas/genética , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Humanos , Irlanda , Dados de Sequência Molecular , Necrose , Fenótipo , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , Inanição
3.
Radiother Oncol ; 180: 109461, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634852

RESUMO

BACKGROUND AND PURPOSE: The use of SBRT for the treatment of oligometastatic prostate cancer is increasing rapidly. While consensus guidelines are available for non-spinal bone metastases practice continues to vary widely. The aim of this study is to look at inter-observer variability in the contouring of prostate cancer non-spinal bone metastases with different imaging modalities. MATERIALS AND METHODS: 15 metastases from 13 patients treated at our centre were selected. 4 observers independently contoured clinical target volumes (CTV) on planning CT alone, planning CT with MRI fusion, planning CT with PET-CT fusion and planning CT with both MRI and PET-CT fusion combined. The mean inter-observer agreement on each modality was compared by measuring the delineated volume, generalized conformity index (CIgen), and the distance of the centre of mass (dCOM), calculated per metastasis and imaging modality. RESULTS: Mean CTV volume delineated on planning CT with MRI and PET-CT fusion combined was significantly larger compared to other imaging modalities (p = 0.0001). CIgen showed marked variation between modalities with the highest agreement between planning CT + PET-CT (mean CIgen 0.55, range 0.32-0.73) and planning CT + MRI + PET-CT (mean CIgen 0.59, range 0.34-0.73). dCOM showed small variations between imaging modalities but a significantly shorter distance found on planning CT + PET-CT when compared with planning CT + PET-CT + MRI combined (p = 0.03). CONCLUSIONS: Highest consistency in CTV delineation between observers was seen with planning CT + PET-CT and planning CT + PET-CT + MRI combined.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Imageamento por Ressonância Magnética , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/radioterapia , Variações Dependentes do Observador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Tomografia Computadorizada por Raios X , Humanos , Masculino
4.
New Phytol ; 196(1): 13-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22897362

RESUMO

Ubiquitin is well established as a major modifier of signalling in eukaryotes. However, the extent to which plants rely on ubiquitin for regulating their lifecycle is only recently becoming apparent. This is underlined by the over-representation of genes encoding ubiquitin-metabolizing enzymes in Arabidopsis when compared with other model eukaryotes. The main characteristic of ubiquitination is the conjugation of ubiquitin onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The ubiquitin-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This review maps out the roles of the components of the ubiquitin-proteasome system with emphasis on areas where future research is urgently needed. We provide a flavour of the diverse aspects of plant lifecycle where the ubiquitin-proteasome system is implicated. We aim to highlight common themes using key examples that reiterate the importance of the ubiquitin-proteasome system to plants. The future challenge in plant biology is to define the targets for ubiquitination, their interactors and their molecular function within the regulatory context.


Assuntos
Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Desenvolvimento Vegetal , Proteólise
5.
Biochem J ; 438(1): 143-53, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21612577

RESUMO

Chloroplast precursor proteins encoded in the nucleus depend on their targeting sequences for delivery to chloroplasts. There exist different routes to the chloroplast outer envelope, but a common theme is the involvement of molecular chaperones. Hsp90 (heat-shock protein 90) delivers precursors via its receptor Toc64, which transfers precursors to the core translocase in the outer envelope. In the present paper, we identify an uncharacterized protein in Arabidopsis thaliana OEP61 which shares common features with Toc64, and potentially provides an alternative route to the chloroplasts. Sequence analysis indicates that OEP61 possesses a clamp-type TPR (tetratricopeptide repeat) domain capable of binding molecular chaperones, and a C-terminal TMD (transmembrane domain). Phylogenetic comparisons show sequence similarities between the TPR domain of OEP61 and those of the Toc64 family. Expression of mRNA and protein was detected in all plant tissues, and localization at the chloroplast outer envelope was demonstrated by a combination of microscopy and in vitro import assays. Binding assays show that OEP61 interacts specifically with Hsp70 (heat-shock protein 70) via its TPR clamp domain. Furthermore, OEP61 selectively recognizes chloroplast precursors via their targeting sequences, and a soluble form of OEP61 inhibits chloroplast targeting. We therefore propose that OEP61 is a novel chaperone receptor at the chloroplast outer envelope, mediating Hsp70-dependent protein targeting to chloroplasts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Plastídeos/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Western Blotting , DNA de Plantas/genética , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transcrição Gênica
6.
New Phytol ; 191(1): 92-106, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21388379

RESUMO

• Signalling by ubiquitination is implicated in diverse aspects of the plant lifecycle, and enzymes of ubiquitin metabolism are overrepresented in the Arabidopsis genome compared with other model eukaryotes. Despite the importance of ubiquitination in the regulation of signalling, little is known about deubiquitinating enzymes, which reverse the process of ubiquitination. • Transgenic RNA interference-based cosuppression and the isolation of Atubp12/13 double mutants collectively provides the first report that AtUBP12 and AtUBP13 are functionally redundant and are required for immunity against virulent Pseudomonas syringae pv tomato in Arabidopsis. The Solanaceous AtUBP12 orthologue NtUBP12 was identified. Viral-induced gene silencing and transient gain-of-function assays were employed to establish that the NtUBP12 protein functions as a negative regulator of the Cf-9-triggered hypersensitive response. • Here, we demonstrate that NtUBP12 and AtUBP12 are bona fide deubiquitinating enzymes capable of cleaving lysine-48-linked ubiquitin chains. AtUBP12 and NtUBP12 are functionally interchangeable and their deubiquitinating activity is required to suppress plant cell death. • Overall, our data implicate AtUBP12- and NtUBP12-dependent deubiquitination in the stabilization of common substrates across Solanaceae and Brassicaceae which regulate disease resistance.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Endopeptidases/fisiologia , Nicotiana/enzimologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Imunidade Inata/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas syringae/imunologia , Interferência de RNA , Alinhamento de Sequência , Transdução de Sinais , Nicotiana/imunologia , Nicotiana/microbiologia , Proteases Específicas de Ubiquitina , Ubiquitinação
7.
J Exp Bot ; 60(4): 1123-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19276192

RESUMO

In yeast and in animals the ubiquitin-proteasome system (UPS) is responsible for removing or modifying most abnormal peptides and also short-lived cellular regulators. The UPS therefore influences many processes such as the cell cycle, signal transduction, transcription, and stress responses including defence. In recent years, similar regulatory roles have been identified in plants. In Arabidopsis, mutations in the ubiquitin-proteasome pathway block development, circadian rhythms, photomorphogenesis, floral homeosis, hormone responses, senescence, and pathogen invasion. Plants have evolved an armoury of defence mechanisms that allow them to counter infection. These encompass both basal responses, triggered by recognition of conserved pathogen-associated molecular patterns, and pathogen-specific responses, mediated via pathogen- and plant-specific gene-for-gene recognition events. The role of E3 ubiquitin ligases in mediating plant defence signalling is reviewed and examples where pathogens impinge on the host's ubiquitination machinery acting as molecular mimics to undermine defence are also highlighted.


Assuntos
Imunidade Inata , Plantas/enzimologia , Plantas/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Ubiquitinação
8.
J Exp Bot ; 60(4): 1133-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19204033

RESUMO

Plant pathogens establish infection by secretion of effector proteins that may be delivered inside host cells to manipulate innate immunity. It is increasingly apparent that the ubiquitin proteasome system (UPS) contributes significantly to the regulation of plant defences and, as such, is a target for pathogen effectors. Bacterial effectors delivered by the type III and IV secretion systems have been shown to interact with components of the host UPS. Some of these effectors possess functional domains that are conserved in UPS enzymes, whilst others contain novel domains with ubiquitination activities. Relatively little is known about effector activities in eukaryotic microbial plant pathogens. Nevertheless, effectors from oomycetes that contain an RXLR motif for translocation to the inside of plant cells have been shown to suppress host defences. Annotation of the genome of one such oomycete, the potato late blight pathogen Phytophthora infestans, and protein-protein interaction assays to discover host proteins targeted by the RXLR effector AVR3a, have revealed that this eukaryotic plant pathogen also has the potential to manipulate host plant UPS functions.


Assuntos
Proteínas de Algas/química , Proteínas de Algas/metabolismo , Phytophthora infestans/patogenicidade , Plantas/imunologia , Plantas/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Dados de Sequência Molecular , Phytophthora infestans/genética , Ubiquitinação , Virulência
9.
BMC Evol Biol ; 5: 31, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15892888

RESUMO

BACKGROUND: Integrins are a functionally significant family of metazoan cell surface adhesion receptors. The receptors are dimers composed of an alpha and a beta chain. Vertebrate genomes encode an expanded set of integrin alpha and beta chains in comparison with protostomes such as drosophila or the nematode worm. The publication of the genome of a basal chordate, Ciona intestinalis, provides a unique opportunity to gain further insight into how and when the expanded integrin supergene family found in vertebrates evolved. RESULTS: The Ciona genome encodes eleven alpha and five beta chain genes that are highly homologous to their vertebrate homologues. Eight of the alpha chains contain an A-domain that lacks the short alpha helical region present in the collagen-binding vertebrate alpha chains. Phylogenetic analyses indicate the eight A-domain containing alpha chains cluster to form an ascidian-specific clade that is related to but, distinct from, the vertebrate A-domain clade. Two Ciona alpha chains cluster in laminin-binding clade and the remaining chain clusters in the clade that binds the RGD tripeptide sequence. Of the five Ciona beta chains, three form an ascidian-specific clade, one clusters in the vertebrate beta1 clade and the remaining Ciona chain is the orthologue of the vertebrate beta4 chain. CONCLUSION: The Ciona repertoire of integrin genes provides new insight into the basic set of these receptors available at the beginning of vertebrate evolution. The ascidian and vertebrate alpha chain A-domain clades originated from a common precursor but radiated separately in each lineage. It would appear that the acquisition of collagen binding capabilities occurred in the chordate lineage after the divergence of ascidians.


Assuntos
Evolução Molecular , Integrinas/genética , Sequência de Aminoácidos , Animais , Ciona intestinalis , Éxons , Genoma , Humanos , Integrinas/química , Integrinas/metabolismo , Laminina/química , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Oligopeptídeos/química , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
10.
Nat Commun ; 6: 6718, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25907794

RESUMO

Dishevelled relays Wnt signals from the plasma membrane to different cytoplasmic effectors. Its signalling activity depends on its DIX domain, which undergoes head-to-tail polymerization to assemble signalosomes. The DIX domain is ubiquitinated in vivo at multiple lysines, which can be antagonized by various deubiquitinases (DUBs) including the CYLD tumour suppressor that attenuates Wnt signalling. Here, we generate milligram quantities of pure human Dvl2 DIX domain mono-ubiquitinated at two lysines (K54 and K58) by genetically encoded orthogonal protection with activated ligation (GOPAL), to investigate their effect on DIX polymerization. We show that the ubiquitination of DIX at K54 blocks its polymerization in solution, whereas DIX58-Ub remains oligomerization-competent. DUB profiling identified 28 DUBs that cleave DIX-ubiquitin conjugates, half of which prefer, or are specific for, DIX54-Ub, including Cezanne and CYLD. These DUBs thus have the potential to promote Dvl polymerization and signalosome formation, rather than antagonize it as previously thought for CYLD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lisina/metabolismo , Fosfoproteínas/metabolismo , Polimerização , Ubiquitinação , Via de Sinalização Wnt , Motivos de Aminoácidos , Cromatografia Líquida , Proteínas Desgrenhadas , Escherichia coli , Humanos , Espectrometria de Massas , Organismos Geneticamente Modificados , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Proteínas Supressoras de Tumor
11.
Open Biol ; 4(5): 140065, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24850914

RESUMO

Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Smad1/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Células HeLa , Humanos , Camundongos , Fosforilação , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação
12.
Nat Commun ; 5: 4763, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25159004

RESUMO

Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analysing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAB/MPN/Mov34 metalloenzyme DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs.


Assuntos
Inibidores de Proteases/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteases Específicas de Ubiquitina/metabolismo , Humanos , Concentração Inibidora 50 , Nitrilas/farmacologia , Nitrofuranos/farmacologia , Reprodutibilidade dos Testes , Especificidade por Substrato , Sulfonas/farmacologia , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina , Proteases Específicas de Ubiquitina/análise , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/genética
13.
Plant Cell ; 18(4): 1084-98, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16531496

RESUMO

Previous analysis of transcriptional changes after elicitation of Cf-9 transgenic tobacco (Nicotiana tabacum) by Avr9 peptide revealed a rapidly upregulated gene, ACRE276. We show that ACRE276 is transiently induced in wounded leaves within 15 min, but upon Avr9 elicitor treatment, this upregulation is enhanced and maintained until cell death onset in Cf-9 tobacco. ACRE276 RNA interference (RNAi) silencing in tobacco results in loss of hypersensitive response (HR) specified by Cf resistance genes. ACRE276 RNAi plants are also compromised for HR mediated by the tobacco mosaic virus defense elicitor p50. Silencing tomato (Lycopersicon esculentum) ACRE276 leads to breakdown of Cf-9-specified resistance against Cladosporium fulvum leaf mold. We confirmed that tobacco ACRE276 is an E3 ubiquitin ligase requiring an intact U-box domain. Bioinformatic analyses revealed Arabidopsis thaliana PLANT U-BOX17 (PUB17) and Brassica napus ARC1 as the closest homologs of tobacco ACRE276. Transiently expressing PUB17 in Cf-9 tobacco silenced for ACRE276 restores HR, while mutant PUB17 lacking E3 ligase activity fails to do so, demonstrating that PUB17 ligase activity is crucial for defense signaling. Arabidopsis PUB17 knockout plants are compromised in RPM1- and RPS4-mediated resistance against Pseudomonas syringae pv tomato containing avirulence genes AvrB and AvrRPS4, respectively. We identify a conserved class of U-box ARMADILLO repeat E3 ligases that are positive regulators of cell death and defense across the Solanaceae and Brassicaceae.


Assuntos
Arabidopsis/enzimologia , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/enzimologia , Morte Celular , Imunidade Inata , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Dados de Sequência Molecular , Doenças das Plantas , Proteínas de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solanaceae/enzimologia , Nicotiana/citologia , Nicotiana/imunologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA