RESUMO
The miniature robber fly Holcocephala fusca intercepts its targets with behaviour that is approximated by the proportional navigation guidance law. During predatory trials, we challenged the interception of H. fusca performance by placing a large object in its potential flight path. In response, H. fusca deviated from the path predicted by pure proportional navigation, but in many cases still eventually contacted the target. We show that such flight deviations can be explained as the output of two competing navigational systems: pure-proportional navigation and a simple obstacle avoidance algorithm. Obstacle avoidance by H. fusca is here described by a simple feedback loop that uses the visual expansion of the approaching obstacle to mediate the magnitude of the turning-away response. We name the integration of this steering law with proportional navigation 'combined guidance'. The results demonstrate that predatory intent does not operate a monopoly on the fly's steering when attacking a target, and that simple guidance combinations can explain obstacle avoidance during interceptive tasks.
Assuntos
Voo Animal , Comportamento Predatório , Animais , Voo Animal/fisiologiaRESUMO
Dragonflies perform dramatic aerial manoeuvres when chasing targets but glide for periods during cruising flights. This makes dragonflies a great system to explore the role of passive stabilizing mechanisms that do not compromise manoeuvrability. We challenged dragonflies by dropping them from selected inverted attitudes and collected 6-degrees-of-freedom aerial recovery kinematics via custom motion capture techniques. From these kinematic data, we performed rigid-body inverse dynamics to reconstruct the forces and torques involved in righting behaviour. We found that inverted dragonflies typically recover themselves with the shortest rotation from the initial body inclination. Additionally, they exhibited a strong tendency to pitch-up with their head leading out of the manoeuvre, despite the lower moment of inertia in the roll axis. Surprisingly, anaesthetized dragonflies could also complete aerial righting reliably. Such passive righting disappeared in recently dead dragonflies but could be partially recovered by waxing their wings to the anaesthetised posture. Our kinematics data, inverse dynamics model and wind-tunnel experiments suggest that the dragonfly's long abdomen and wing posture generate a rotational tendency and passive attitude recovery mechanism during falling. This work demonstrates an aerodynamically stable body configuration in a flying insect and raises new questions in sensorimotor control for small flying systems.
Assuntos
Odonatos , Animais , Fenômenos Biomecânicos , Voo Animal , Insetos , Asas de AnimaisRESUMO
Explanations of why nocturnal insects fly erratically around fires and lamps have included theories of "lunar navigation" and "escape to the light". However, without three-dimensional flight data to test them rigorously, the cause for this odd behaviour has remained unsolved. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights.
Assuntos
Voo Animal , Insetos , Animais , Voo Animal/fisiologia , Insetos/fisiologia , LuzRESUMO
Akin to all damselflies, Calopteryx (family Calopterygidae), commonly known as jewel wings or demoiselles, possess dichoptic (separated) eyes with overlapping visual fields of view. In contrast, many dragonfly species possess holoptic (dorsally fused) eyes with limited binocular overlap. We have here compared the neuronal correlates of target tracking between damselfly and dragonfly sister lineages and linked these changes in visual overlap to pre-motor neural adaptations. Although dragonflies attack prey dorsally, we show that demoiselles attack prey frontally. We identify demoiselle target-selective descending neurons (TSDNs) with matching frontal visual receptive fields, anatomically and functionally homologous to the dorsally positioned dragonfly TSDNs. By manipulating visual input using eyepatches and prisms, we show that moving target information at the pre-motor level depends on binocular summation in demoiselles. Consequently, demoiselles encode directional information in a binocularly fused frame of reference such that information of a target moving toward the midline in the left eye is fused with information of the target moving away from the midline in the right eye. This contrasts with dragonfly TSDNs, where receptive fields possess a sharp midline boundary, confining responses to a single visual hemifield in a sagittal frame of reference (i.e., relative to the midline). Our results indicate that, although TSDNs are conserved across Odonata, their neural inputs, and thus the upstream organization of the target tracking system, differ significantly and match divergence in eye design and predatory strategies. VIDEO ABSTRACT.
Assuntos
Voo Animal , Odonatos/fisiologia , Comportamento Predatório/fisiologia , Campos Visuais/fisiologia , AnimaisRESUMO
When aiming to capture a fast-moving target, animals can follow it until they catch up, or try to intercept it. In principle, interception is the more complicated strategy, but also more energy efficient. To study whether simple feedback controllers can explain interception behaviours by animals with miniature brains, we have reconstructed and studied the predatory flights of the robber fly Holcocephala fusca and killer fly Coenosia attenuata Although both species catch other aerial arthropods out of the air, Holcocephala contrasts prey against the open sky, while Coenosia hunts against clutter and at much closer range. Thus, their solutions to this target catching task may differ significantly. We reconstructed in three dimensions the flight trajectories of these two species and those of the presented targets they were attempting to intercept. We then tested their recorded performances against simulations. We found that both species intercept targets on near time-optimal courses. To investigate the guidance laws that could underlie this behaviour, we tested three alternative control systems (pure pursuit, deviated pursuit and proportional navigation). Only proportional navigation explains the timing and magnitude of fly steering responses, but with differing gain constants and delays for each fly species. Holcocephala uses a dimensionless navigational constant of N ≈ 3 with a time delay of ≈28 ms to intercept targets over a comparatively long range. This constant is optimal, as it minimizes the control effort required to hit the target. In contrast, Coenosia uses a constant of N ≈ 1.5 with a time delay of ≈18 ms, this setting may allow Coenosia to cope with the extremely high line-of-sight rotation rates, which are due to close target proximity, and thus prevent overcompensation of steering. This is the first clear evidence of interception supported by proportional navigation in insects. This work also demonstrates how by setting different gains and delays, the same simple feedback controller can yield the necessary performance in two different environments.
Assuntos
Dípteros/fisiologia , Voo Animal/fisiologia , Comportamento Predatório/fisiologia , Animais , Modelos BiológicosRESUMO
Our visual system allows us to rapidly identify and intercept a moving object. When this object is far away, we base the trajectory on the target's location relative to an external frame of reference [1]. This process forms the basis for the constant bearing angle (CBA) model, a reactive strategy that ensures interception since the bearing angle, formed between the line joining pursuer and target (called the range vector) and an external reference line, is held constant [2-4]. The CBA model may be a fundamental and widespread strategy, as it is also known to explain the interception trajectories of bats and fish [5, 6]. Here, we show that the aerial attack of the tiny robber fly Holcocephala fusca is consistent with the CBA model. In addition, Holcocephala fusca displays a novel proactive strategy, termed "lock-on" phase, embedded with the later part of the flight. We found the object detection threshold for this species to be 0.13°, enabled by an extremely specialized, forward pointing fovea (â¼5 ommatidia wide, interommatidial angle Δφ = 0.28°, photoreceptor acceptance angle Δρ = 0.27°). This study furthers our understanding of the accurate performance that a miniature brain can achieve in highly demanding sensorimotor tasks and suggests the presence of equivalent mechanisms for target interception across a wide range of taxa. VIDEO ABSTRACT.
Assuntos
Dípteros/fisiologia , Percepção de Movimento , Acuidade Visual , Animais , Desempenho PsicomotorRESUMO
Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks.