Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(11): 2628-2632, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788686

RESUMO

Glycans, with their variable compositions and highly dynamic conformations, vastly expand the heterogeneity of whatever factor or cell they are attached to. These properties make them crucial contributors to biological function and organismal health and also very difficult to study. That may be changing as we look to the future of glycobiology.


Assuntos
Glicômica , Polissacarídeos , Animais , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/química
2.
Nat Methods ; 21(7): 1206-1215, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951670

RESUMO

Glycans constitute the most complicated post-translational modification, modulating protein activity in health and disease. However, structural annotation from tandem mass spectrometry (MS/MS) data is a bottleneck in glycomics, preventing high-throughput endeavors and relegating glycomics to a few experts. Trained on a newly curated set of 500,000 annotated MS/MS spectra, here we present CandyCrunch, a dilated residual neural network predicting glycan structure from raw liquid chromatography-MS/MS data in seconds (top-1 accuracy: 90.3%). We developed an open-access Python-based workflow of raw data conversion and prediction, followed by automated curation and fragment annotation, with predictions recapitulating and extending expert annotation. We demonstrate that this can be used for de novo annotation, diagnostic fragment identification and high-throughput glycomics. For maximum impact, this entire pipeline is tightly interlaced with our glycowork platform and can be easily tested at https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.ipynb . We envision CandyCrunch to democratize structural glycomics and the elucidation of biological roles of glycans.


Assuntos
Aprendizado Profundo , Polissacarídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Polissacarídeos/química , Polissacarídeos/análise , Glicômica/métodos , Humanos , Cromatografia Líquida/métodos , Software , Fluxo de Trabalho , Redes Neurais de Computação
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38782304

RESUMO

Lysosomal acid sphingomyelinase (ASM), a critical enzyme in lipid metabolism encoded by the SMPD1 gene, plays a crucial role in sphingomyelin hydrolysis in lysosomes. ASM deficiency leads to acid sphingomyelinase deficiency, a rare genetic disorder with diverse clinical manifestations, and the protein can be found mutated in other diseases. We employed a structure-based framework to comprehensively understand the functional implications of ASM variants, integrating pathogenicity predictions with molecular insights derived from a molecular dynamics simulation in a lysosomal membrane environment. Our analysis, encompassing over 400 variants, establishes a structural atlas of missense variants of lysosomal ASM, associating mechanistic indicators with pathogenic potential. Our study highlights variants that influence structural stability or exert local and long-range effects at functional sites. To validate our predictions, we compared them to available experimental data on residual catalytic activity in 135 ASM variants. Notably, our findings also suggest applications of the resulting data for identifying cases suited for enzyme replacement therapy. This comprehensive approach enhances the understanding of ASM variants and provides valuable insights for potential therapeutic interventions.


Assuntos
Lisossomos , Simulação de Dinâmica Molecular , Esfingomielina Fosfodiesterase , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/genética , Mutação de Sentido Incorreto
4.
Elife ; 132024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864493

RESUMO

Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 µs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan's structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicosilação , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Humanos , COVID-19/virologia , COVID-19/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/química , Domínios Proteicos , Sítios de Ligação , Conformação Proteica , Mutação
5.
Database (Oxford) ; 20242024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137905

RESUMO

Dynamic changes in protein glycosylation impact human health and disease progression. However, current resources that capture disease and phenotype information focus primarily on the macromolecules within the central dogma of molecular biology (DNA, RNA, proteins). To gain a better understanding of organisms, there is a need to capture the functional impact of glycans and glycosylation on biological processes. A workshop titled "Functional impact of glycans and their curation" was held in conjunction with the 16th Annual International Biocuration Conference to discuss ongoing worldwide activities related to glycan function curation. This workshop brought together subject matter experts, tool developers, and biocurators from over 20 projects and bioinformatics resources. Participants discussed four key topics for each of their resources: (i) how they curate glycan function-related data from publications and other sources, (ii) what type of data they would like to acquire, (iii) what data they currently have, and (iv) what standards they use. Their answers contributed input that provided a comprehensive overview of state-of-the-art glycan function curation and annotations. This report summarizes the outcome of discussions, including potential solutions and areas where curators, data wranglers, and text mining experts can collaborate to address current gaps in glycan and glycosylation annotations, leveraging each other's work to improve their respective resources and encourage impactful data sharing among resources. Database URL: https://wiki.glygen.org/Glycan_Function_Workshop_2023.


Assuntos
Curadoria de Dados , Polissacarídeos , Polissacarídeos/metabolismo , Humanos , Curadoria de Dados/métodos , Glicosilação , Itália , Biocuradoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA