Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 192(1): 227-239, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31834515

RESUMO

The production and fate of seaweed detritus is a major unknown in the global C-budget. Knowing the quantity of detritus produced, the form it takes (size) and its timing of delivery are key to understanding its role as a resource subsidy to secondary production and/or its potential contribution to C-sequestration. We quantified the production and release of detritus from 10 Laminaria hyperborea sites in northern Norway (69.6° N). Kelp biomass averaged 770 ± 100 g C m-2 while net production reached 499 ± 50 g C m-2 year-1, with most taking place in spring when new blades were formed. Production of biomass was balanced by a similar formation of detritus (478 ± 41 g C m-2 year-1), and both were unrelated to wave exposure when compared across sites. Distal blade erosion accounted for 23% of the total detritus production and was highest during autumn and winter, while dislodgment of whole individuals and/or whole blades corresponded to 24% of the detritus production. Detachment of old blades constituted the largest source of kelp detritus, accounting for > 50% of the total detrital production. Almost 80% of the detritus from L. hyperborea was thus in the form of whole plants or blades and > 60% of that was delivered as a large pulse within 1-2 months in spring. The discrete nature of the delivery suggests that the detritus cannot be retained and consumed locally and that some is exported to adjacent deep areas where it may subsidize secondary production or become buried into deep marine sediments as blue carbon.


Assuntos
Kelp , Carbono , Ecossistema , Florestas , Noruega
2.
Sci Rep ; 6: 23800, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025314

RESUMO

A test deployment of a time-lapse camera lander in the deep Oslofjord (431 m) was used to obtain initial information on the response of benthic fauna to macroalgal debris. Three macroalgal species were used on the lander baited plate: Fucus serratus, Saccharina latissima and Laminaria hyperborea and observed during 41.5 hours. The deep-water shrimp Pandalus borealis were attracted to the macroalgae rapidly (3 min after the lander reached the seafloor), followed by amphipods. Shrimp abundances were significantly higher in areas covered by macroalgae compared to the adjacent seafloor and the number of shrimp visiting the macroalgae increased with time. Amphipods arrived 13 hours later and were observed mainly on decaying L. hyperborea. The abundance of amphipods on L. hyperborea increased rapidly, reaching a peak at 31 h after deployment. These initial observations suggest that debris from kelp forests and other macroalgal beds may play an important role in fuelling deep benthic communities in the outer Oslofjord and, potentially, enhance secondary production of commercial species such as P. borealis.


Assuntos
Anfípodes/fisiologia , Kelp , Pandalidae/fisiologia , Distribuição Animal , Animais , Comportamento Alimentar , Noruega , Imagem com Lapso de Tempo
3.
BMC Res Notes ; 7: 699, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25291990

RESUMO

BACKGROUND: The green sea urchin Strongylocentrotus droebachiensis has a wide circumpolar distribution and plays a key role in coastal ecosystems worldwide by destructively grazing macroalgae beds and turn them into marine deserts, so-called barren grounds. In the past decades, large established kelp forests have been overgrazed and transformed to such barren grounds on the Norwegian coast. This has important repercussions for the coastal diversity and production, including reproduction of several fish species relying on the kelp forests as nurseries. Genetic diversity is an important parameter for the study and further anticipation of this large scale phenomenon. FINDINGS: Microsatellites were developed using a Norwegian S. droebachiensis individual primarily for the study of Northeast Atlantic populations. The 10 new microsatellite loci were amplified using M13 forward tails, enabling the use of M13 fluorescent tagged primers for multiplex reading. Among these loci, 2 acted polysomic and should therefore not be considered useful for population genetic analysis. We screened 96 individuals sampled from 4 different sites along the Norwegian coast which have shown unexpected diversity. CONCLUSIONS: The new microsatellite loci should be a useful resource for further research into connectivity among S. droebachiensis populations, and assessing the risks for spreading and new overgrazing events.


Assuntos
Primers do DNA/metabolismo , Loci Gênicos , Repetições de Microssatélites/genética , Strongylocentrotus/genética , Animais , Marcadores Genéticos , Dados de Sequência Molecular , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA