Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
EMBO J ; 40(20): e107158, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515347

RESUMO

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Assuntos
Nucléolo Celular/metabolismo , Gânglios Espinais/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Nervo Isquiático/metabolismo , Sequência de Aminoácidos , Animais , Transporte Axonal/genética , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , Gânglios Espinais/citologia , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Neurônios/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultura Primária de Células , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Nervo Isquiático/citologia , Nucleolina
2.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218033

RESUMO

Size homeostasis is a fundamental process in biology and is particularly important for large cells such as neurons. We previously proposed a motor-dependent length-sensing mechanism wherein reductions in microtubule motor levels would be expected to accelerate neuronal growth, and validated this prediction in dynein heavy chain 1 Loa mutant (Dync1h1Loa) sensory neurons. Here, we describe a new mouse model with a conditional deletion allele of exons 24 and 25 in Dync1h1. Homozygous Islet1-Cre-mediated deletion of Dync1h1 (Isl1-Dync1h1-/-), which deletes protein from the motor and sensory neurons, is embryonic lethal, but heterozygous animals (Isl1-Dync1h1+/-) survive to adulthood with ∼50% dynein expression in targeted cells. Isl1-Dync1h1+/- sensory neurons reveal accelerated growth, as previously reported in Dync1h1Loa neurons. Moreover, Isl1-Dync1h1+/- mice show mild impairments in gait, proprioception and tactile sensation, similar to what is seen in Dync1h1Loa mice, confirming that specific aspects of the Loa phenotype are due to reduced dynein levels. Isl1-Dync1h1+/- mice also show delayed recovery from peripheral nerve injury, likely due to reduced injury signal delivery from axonal lesion sites. Thus, conditional deletion of Dync1h1 exons 24 and 25 enables targeted studies of the role of dynein in neuronal growth.


Assuntos
Dineínas do Citoplasma , Dineínas , Camundongos , Animais , Dineínas/genética , Dineínas/metabolismo , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Alelos , Mutação , Células Receptoras Sensoriais/metabolismo
3.
Mol Cell Proteomics ; 21(11): 100418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180036

RESUMO

Importin ß1 (KPNB1) is a nucleocytoplasmic transport factor with critical roles in both cytoplasmic and nucleocytoplasmic transport, hence there is keen interest in the characterization of its subcellular interactomes. We found limited efficiency of BioID in the detection of importin complex cargos and therefore generated a highly specific and sensitive anti-KPNB1 monoclonal antibody to enable biotinylation by antibody recognition analysis of importin ß1 interactomes. The monoclonal antibody recognizes an epitope comprising residues 301-320 of human KPBN1 and strikingly is highly specific for cytoplasmic KPNB1 in diverse applications, with little reaction with KPNB1 in the nucleus. Biotinylation by antibody recognition with this novel antibody revealed numerous new interactors of importin ß1, expanding the KPNB1 interactome to cytoplasmic and signaling complexes that highlight potential new functions for the importins complex beyond nucleocytoplasmic transport. Data are available via ProteomeXchange with identifier PXD032728.


Assuntos
Anticorpos Monoclonais , Carioferinas , Humanos , Carioferinas/metabolismo , Anticorpos Monoclonais/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Citoplasma/metabolismo , Núcleo Celular/metabolismo
4.
Neurobiol Dis ; 140: 104816, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32088381

RESUMO

The cytoplasmic dynein motor complex transports essential signals and organelles from the cell periphery to the perinuclear region, hence is critical for the survival and function of highly polarized cells such as neurons. Dynein Light Chain Roadblock-Type 1 (DYNLRB1) is thought to be an accessory subunit required for specific cargos, but here we show that it is essential for general dynein-mediated transport and sensory neuron survival. Homozygous Dynlrb1 null mice are not viable and die during early embryonic development. Furthermore, heterozygous or adult knockdown animals display reduced neuronal growth, and selective depletion of Dynlrb1 in proprioceptive neurons compromises their survival. Conditional depletion of Dynlrb1 in sensory neurons causes deficits in several signaling pathways, including ß-catenin subcellular localization, and a severe impairment in the axonal transport of both lysosomes and retrograde signaling endosomes. Hence, DYNLRB1 is an essential component of the dynein complex, and given dynein's critical functions in neuronal physiology, DYNLRB1 could have a prominent role in the etiology of human neurodegenerative diseases.


Assuntos
Transporte Axonal/fisiologia , Dineínas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Sobrevivência Celular , Células Cultivadas , Dineínas/genética , Lisossomos/metabolismo , Masculino , Camundongos , Neurogênese , Organelas/metabolismo , Transfecção
5.
Mol Cell Proteomics ; 17(11): 2091-2106, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30038033

RESUMO

mRNA translation in axons enables neurons to introduce new proteins at sites distant from their cell body. mRNA-protein interactions drive this post-transcriptional regulation, yet knowledge of RNA binding proteins (RBP) in axons is limited. Here we used proteomics to identify RBPs interacting with the axonal localizing motifs of Nrn1, Hmgb1, Actb, and Gap43 mRNAs, revealing many novel RBPs in axons. Interestingly, no RBP is shared between all four RNA motifs, suggesting graded and overlapping specificities of RBP-mRNA pairings. A systematic assessment of axonal mRNAs interacting with hnRNP H1, hnRNP F, and hnRNP K, proteins that bound with high specificity to Nrn1 and Hmgb1, revealed that axonal mRNAs segregate into axon growth-associated RNA regulons based on hnRNP interactions. Axotomy increases axonal transport of hnRNPs H1, F, and K, depletion of these hnRNPs decreases axon growth and reduces axonal mRNA levels and axonal protein synthesis. Thus, subcellular hnRNP-interacting RNA regulons support neuronal growth and regeneration.


Assuntos
Axônios/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Motivos de Nucleotídeos/genética , RNA Mensageiro/genética , Regulon/genética , Regiões 5' não Traduzidas/genética , Animais , Transporte Axonal/genética , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Transporte de RNA/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
6.
BMC Biol ; 17(1): 36, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035993

RESUMO

Individual cell types have characteristic sizes, suggesting that size sensing mechanisms may coordinate transcription, translation, and metabolism with cell growth rates. Two types of size-sensing mechanisms have been proposed: spatial sensing of the location or dimensions of a signal, subcellular structure or organelle; or titration-based sensing of the intracellular concentrations of key regulators. Here we propose that size sensing in animal cells combines both titration and spatial sensing elements in a dynamic mechanism whereby microtubule motor-dependent localization of RNA encoding importin ß1 and mTOR, coupled with regulated local protein synthesis, enable cytoskeleton length sensing for cell growth regulation.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Tamanho Celular , Retroalimentação Fisiológica , Animais , Modelos Biológicos
7.
Nat Rev Neurosci ; 15(1): 32-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24326686

RESUMO

The extensive lengths of neuronal processes necessitate efficient mechanisms for communication with the cell body. Neuronal regeneration after nerve injury requires new transcription; thus, long-distance retrograde signalling from axonal lesion sites to the soma and nucleus is required. In recent years, considerable progress has been made in elucidating the mechanistic basis of this system. This has included the discovery of a priming role for early calcium waves; confirmation of central roles for mitogen-activated protein kinase signalling effectors, the importin family of nucleocytoplasmic transport factors and molecular motors such as dynein; and demonstration of the importance of local translation as a key regulatory mechanism. These recent findings provide a coherent mechanistic framework for axon-soma communication in the injured nerve and shed light on the integration of cytoplasmic and nuclear transport in all eukaryotic cells.


Assuntos
Axônios/fisiologia , Comunicação Celular/fisiologia , Citoplasma/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos
8.
EMBO J ; 31(6): 1350-63, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22246183

RESUMO

Retrograde axonal injury signalling stimulates cell body responses in lesioned peripheral neurons. The involvement of importins in retrograde transport suggests that transcription factors (TFs) might be directly involved in axonal injury signalling. Here, we show that multiple TFs are found in axons and associate with dynein in axoplasm from injured nerve. Biochemical and functional validation for one TF family establishes that axonal STAT3 is locally translated and activated upon injury, and is transported retrogradely with dynein and importin α5 to modulate survival of peripheral sensory neurons after injury. Hence, retrograde transport of TFs from axonal lesion sites provides a direct link between axon and nucleus.


Assuntos
Axônios/metabolismo , Gânglios Espinais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transporte Axonal/fisiologia , Núcleo Celular/metabolismo , Dineínas/metabolismo , Carioferinas/metabolismo , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
10.
J Biol Chem ; 287(35): 29285-9, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22782892

RESUMO

The TrkA receptor tyrosine kinase induces death in medulloblastoma cells via an interaction with the cerebral cavernous malformation 2 (CCM2) protein. We used affinity proteomics to identify the germinal center kinase class III (GCKIII) kinases STK24 and STK25 as novel CCM2 interactors. Down-modulation of STK25, but not STK24, rescued medulloblastoma cells from NGF-induced TrkA-dependent cell death, suggesting that STK25 is part of the death-signaling pathway initiated by TrkA and CCM2. CCM2 can be phosphorylated by STK25, and the kinase activity of STK25 is required for death signaling. Finally, STK25 expression in tumors is correlated with positive prognosis in neuroblastoma patients. These findings delineate a death-signaling pathway downstream of neurotrophic receptor tyrosine kinases that may provide targets for therapeutic intervention in pediatric tumors of neural origin.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Meduloblastoma/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Adolescente , Animais , Proteínas de Transporte/genética , Morte Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteômica , Receptor trkA/genética
12.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506203

RESUMO

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Assuntos
Axônios , Regeneração Nervosa , Neurônios , Traumatismos dos Nervos Periféricos , Adulto , Humanos , Axônios/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Interneurônios/metabolismo , Regeneração Nervosa/genética , Neurônios/metabolismo , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo
13.
Traffic ; 11(12): 1498-505, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21040295

RESUMO

Interest in the mechanisms of subcellular localization of mRNAs and the effects of localized translation has increased over the last decade. Polarized eukaryotic cells transport mRNA-protein complexes to subcellular sites, where translation of the mRNAs can be regulated by physiological stimuli. The long distances separating distal neuronal processes from their cell body have made neurons a useful model system for dissecting mechanisms of mRNA trafficking. Both the dendritic and axonal processes of neurons have been shown to have protein synthetic capacity and the diversity of mRNAs discovered in these processes continues to increase. Localized translation of mRNAs requires a co-ordinated effort by the cell body to target both mRNAs and necessary translational machinery into distal sites, as well as temporal control of individual mRNA translation. In addition to altering protein composition locally at the site of translation, some of the proteins generated in injured nerves retrogradely signal to the cell body, providing both temporal and spatial information on events occurring at distant subcellular sites.


Assuntos
Comunicação Celular , Neurônios/metabolismo , Biossíntese de Proteínas , Transporte de RNA , RNA Mensageiro/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Regeneração Nervosa , Proteínas do Tecido Nervoso/metabolismo
14.
J Neurosci ; 31(45): 16045-8, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072654

RESUMO

How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.


Assuntos
Núcleo Celular/fisiologia , Neurônios/citologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Animais
15.
J Neurosci ; 31(14): 5483-94, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471385

RESUMO

The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system.


Assuntos
Comportamento Animal/fisiologia , Dineínas do Citoplasma/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fenótipo , Mutação Puntual/genética , Animais , Animais Recém-Nascidos , Asparagina/genética , Contagem de Células/métodos , Células Cultivadas , Córtex Cerebral/citologia , Dendritos/genética , Embrião de Mamíferos , Feminino , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Proteínas do Tecido Nervoso , Condução Nervosa/genética , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Desempenho Psicomotor , Estatísticas não Paramétricas , Tirosina/genética , Levantamento de Peso/fisiologia
16.
Mol Cell Proteomics ; 9(5): 976-87, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19955087

RESUMO

Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles transported in both anterograde and retrograde directions. Variability of replicates did not allow straightforward assignment of proteins to functional transport categories; hence, we performed principal component analysis and factor analysis with subsequent clustering to determine the most prominent injury-related transported proteins. This strategy circumvented experimental variability and allowed the extraction of biologically meaningful information from the quantitative neuroproteomics experiments. 299 proteins were highlighted by principal component analysis and factor analysis, 145 of which correlate with retrograde and 154 of which correlate with anterograde transport after injury. The analyses reveal extensive changes in both anterograde and retrograde transport proteomes in injured peripheral axons and emphasize the importance of RNA binding and translational machineries in the axonal response to injury.


Assuntos
Transporte Axonal , Biossíntese de Proteínas , Proteômica/métodos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Animais , Transporte Axonal/genética , Análise por Conglomerados , Bases de Dados de Proteínas , Análise Fatorial , Marcação por Isótopo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/análise , Análise de Componente Principal , Processamento de Proteína Pós-Traducional , Ratos , Ratos Wistar , Estatística como Assunto
17.
Semin Cell Dev Biol ; 20(5): 600-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19409503

RESUMO

Active nucleocytoplasmic transport of macromolecules requires soluble transport carriers of the importin/karyopherin superfamily. Although the nuclear transport machinery is essential in all eukaryotic cells, neurons must also mobilise importins and associated proteins to overcome unique spatiotemporal challenges. These include switches in importin alpha subtype expression during neuronal differentiation, localized axonal synthesis of importin beta1 to coordinate a retrograde injury signaling complex on axonal dynein, and trafficking of regulatory and signaling molecules from synaptic terminals to cell bodies. Targeting of RNAs encoding critical components of the importins complex and the Ran system to axons allows sophisticated local regulation of the system for mobilization upon need. Finally, a number of importin family members have been associated with mental or neurodegenerative diseases. The extended roles recently discovered for importins in the nervous system might also be relevant in non-neuronal cells, and the localized modes of importin regulation in neurons offer new avenues to interrogate their cytoplasmic functions.


Assuntos
Transporte Ativo do Núcleo Celular , Neurônios/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Animais , Humanos , Carioferinas/metabolismo , Doenças do Sistema Nervoso/metabolismo , Plasticidade Neuronal , Neurônios/citologia
18.
Cell Rep Med ; 2(5): 100281, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095883

RESUMO

Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent ß-sitosterol as a promising candidate. ß-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. ß-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of ß-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of ß-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.


Assuntos
Ansiolíticos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Ansiedade/tratamento farmacológico , Sitosteroides/farmacologia , Animais , Medo/efeitos dos fármacos , Fluoxetina/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tranquilizantes/farmacologia
19.
Neuron ; 50(6): 819-21, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16772165

RESUMO

Wallerian degeneration of distal axons after nerve injury is significantly delayed in the Wlds mutant mouse. The Wlds protein is a fusion of nicotinamide mononucleotide adenyltransferase-1 (Nmnat1), an essential enzyme in the biosynthesis pathway of nicotinamide adenine dinucleotide (NAD), with the N-terminal 70 amino acids of the Ube4b ubiquitination assembly factor. The mechanism of Wlds action is still enigmatic, although recent efforts suggest that it is indirect and requires sequences flanking or linking the two fused open reading frames. Three papers in this issue of Neuron now show that Wlds action is conserved in Drosophila and that a critical role of Wlds may be the suppression of axonal self-destruct signals that induce Draper-mediated clearance of damaged axons by glial cells.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sirtuínas/fisiologia , Animais , Proteínas de Drosophila/química , Humanos , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/fisiologia , Sirtuínas/química , Degeneração Walleriana/metabolismo , Degeneração Walleriana/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA