Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 260: 110064, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090811

RESUMO

The present study tests the potentiality of a novel microwave based regenerating permeable reactive barrier (MW-PRB) system as combined treatment for Cs-contaminated groundwater. Granular activated carbon (GAC) was selected as adsorptive materials in batch and column MW-regeneration experiments. Experimental and modeling data were elaborated for technical and economic considerations in order to assess the MW-PRB feasibility jointly with essential information regarding its real field applicability. Batch experiments investigated the effects of 10 adsorption-MW regeneration cycles under different MW irradiation conditions (applied electric field = 200-460 V m-1; irradiation times = 1-15 min) by assessing GAC variation properties in term of regeneration yield (δ), specific area and weight loss (WL) variation. Column tests were carried using a dedicated setup essentially including a column filled with GAC implanted in a MW oven cavity (MW electric field of 385 V m-1, irradiation times 5-15 min). Lab-scale results shown the ability of MW in Cs removal from GAC as demonstrated by regeneration yield (δ = 79-110%) and WL (6.78% for 10 cycles) values. This was confirmed in dynamic conditions by data from MW-column tests highlighting the highest Cs removal of ~80% when the maximum regeneration time was applied. Residual Cs concentration in breakthrough curves fitted well with the proposed Yoon and Nelson model (R2 = ~0.97). Results from techno-economic analysis revealed the MW-PRB viability and its advantages also in comparison with conventional PRB systems, demonstrating the concept of combined MW-PRB treatment. Saved cost obtained demonstrated in fact the potential cost effectiveness of MW-PRB system and, consequently, the implementation of novel approach is encouraged. Calculated PRB longevity vs groundwater velocity curves are useful in order to predict long-term PRB performance and the response of the remediation activities, as well as for guiding the design and the scaling-up of MW-PRB treatment.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Micro-Ondas
2.
J Environ Manage ; 197: 619-630, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432887

RESUMO

This paper examines the application of cement (C)-barite (Ba) based-Stabilisation/Solidification (S/S) for the remediation of 137Cs-contaminated soils, investigating the influence of soil: grout and C: Ba ratios on the shielding performance of the S/S mix assessed as gamma radiation shielding (γRS) index variation. Results from experiments were used to perform a novel approach and an economic analysis in order to calculate the effective dose reduction achievable by S/S and to assess the optimum quantities and costs of selected mixes, respectively. Gamma ray spectrometer measurements indicate that γRS index increases with increasing barite percentage up to a maximum level of 50%; however a further increase results in a worsening of the shielding performances. A maximum γRS variation of 46.5% was recorded with grout percentage increasing from 16.6 to 50%. At the photon energy of 662 keV (137Cs), the maximum grout amount results in the possibility to shield up to 24.1% of γ-rays emitted. The effective dose reduction achievable by the investigated S/S allows a maximum 137Cs-soil contamination in the range 2.94-14.55 kBq kg-1 successfully treatable employing a soil: grout ratio of 1: 1 (C: Ba = 1:1). Technical data, jointly with economic analysis findings, make cement-barite based-S/S very competitive in cost-effectiveness and could provide a basis for decision-making of 137Cs-contaminated site remediation.


Assuntos
Radioisótopos de Césio , Recuperação e Remediação Ambiental , Raios gama , Poluentes Radioativos do Solo , Sulfato de Bário , Poluição Ambiental , Solo
3.
J Environ Manage ; 167: 196-205, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26686072

RESUMO

Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers.


Assuntos
Recuperação e Remediação Ambiental/métodos , Gasolina , Micro-Ondas , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
4.
Water Res ; 198: 117121, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910144

RESUMO

This study investigated the regeneration of PFAS-saturated granular activated carbons (GACs) by microwave (MW) irradiation. Two commercially available GACs (bituminous coal based GAC [BCGAC] and lignite coal based GAC [LCGAC]) were saturated with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) and then irradiated at different MW conditions (applied power = 125 - 500 W, irradiation time = 3 - 12 min). The performance of MW regeneration for PFOS- or PFOA-saturated GACs was assessed by evaluating the variation of GAC adsorption capacity (regeneration efficiency, RE) and weight loss percentage (WL). Moreover, the effect of MW irradiation on GAC textural properties (e.g., surface area and pore volume) was examined through N2 adsorption isotherms. Additionally, five successive adsorption/regeneration cycles were carried out at the MW operational condition that allowed to reach the target temperature (T>600°C) while minimizing the WL. Both GACs exhibited a strong ability to convert MW irradiation into a rapid temperature increase (~150°C min-1 at 500 W). The highest values of RE (>90%) for both PFOA- and PFOS-saturated GACs were obtained at MW irradiation conditions that employed short regeneration time (3 min) and optimal temperature. Indeed, the highest RE did not occur at the highest temperatures (>750°C) due to the damage of GAC porous structure, particularly for LCGAC. After five cycles, the observed values of RE (~65%) and a moderate weight loss (<7%) demonstrated the good performance of MW irradiation for regenerating PFOA- and PFOS-saturated BCGAC. The obtained findings pointed out that MW irradiation is a promising alternative regeneration technique for PFAS-saturated GAC.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Fluorocarbonos/análise , Micro-Ondas , Poluentes Químicos da Água/análise
5.
Water Res ; 171: 115381, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923761

RESUMO

Poly- and perfluoroalkyl substances (PFAS) are a wide group of environmentally persistent organic compounds of industrial origin, which are of great concern due to their harmful impact on human health and ecosystems. Amongst long-chain PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most detected in the aquatic environment, even though their use has been limited by recent regulations. Recently, more attention has been posed on the short-chain compounds, due to their use as an alternative to long-chain ones, and to their high mobility in the water bodies. Therefore, short-chain PFAS have been increasingly detected in the environmental compartments. The main process investigated and implemented for PFAS removal is adsorption. However, to date, most adsorption studies have focused on synthetic water. The main objective of this article is to provide a critical review of the recent peer-reviewed studies on the removal of long- and short-chain PFAS by adsorption. Specific objectives are to review 1) the performance of different adsorbents for both long- and short-chain PFAS, 2) the effect of organic matter, and 3) the adsorbent regeneration techniques. Strong anion-exchange resins seem to better remove both long- and short-chain PFAS. However, the adsorption capacity of short-chain PFAS is lower than that observed for long-chain PFAS. Therefore, short-chain PFAS removal is more challenging. Furthermore, the effect of organic matter on PFAS adsorption in water or wastewater under real environmental conditions is overlooked. In most studies high PFAS levels have been often investigated without organic matter presence. The rapid breakthrough of PFAS is also a limiting factor and the regeneration of PFAS exhausted adsorbents is very challenging and needs more research.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Ecossistema , Humanos , Água
6.
Chemosphere ; 260: 127576, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688317

RESUMO

In this study, a hydrocarbon-contaminated marine sediment was treated applying ex-situ thermal desorption (ESTD) at bench-scale. Temperatures up to 280 °C and heating times (t) in the 5-30 min range were investigated. Results revealed that temperatures in the range 200-280 °C led to Total Petrol Hydrocarbon (TPH)-removal efficiency (RE) from 75 to 85% (t = 10 min). The maximum RE of 89% was obtained at 200 °C for 30 min. However, a shorter remediation time of 5 min (or lower temperatures of 160 and 180 °C with longer times) is needed to reach the TPH standard limit. Data also demonstrated the selectivity of the treatment in TPH fraction removal. The modelling of the TPH removal kinetics and desorption isotherm jointly with activation energy calculation (>30 kJ mol-1) indicated that ESTD process is quite unfavorable for marine sediments. This is due to the fact that ESTD is regulated by chemisorption processes and occurred in two distinct TPH removal phases: evaporation and boiling vaporization. This depends on the strong affinity of the TPH with the fine sediment particles, as well as on the high initial water, salinity, organic matter and sulfides content. However, the comparison between alternative processes has shown that ESTD is the most feasible treatment process for TPH-contaminated marine sediment remediation. Obtained results also add relevant information that can be used as a basis for future scaling-up investigations of ESTD for hydrocarbon-contaminated marine sediments.


Assuntos
Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Hidrocarbonetos/química , Poluição por Petróleo , Cinética , Mar Mediterrâneo , Salinidade , Temperatura , Poluentes Químicos da Água/química
7.
Chemosphere ; 251: 126582, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443243

RESUMO

The present study evaluates the concept of permeable reactive barrier (PRB) coupled with microwaves (MWs) as in situ-regenerating technology with focus on Cs-contaminated water. Experimental and modelling results data from batch and column tests were carried out, evaluating several chemical-physical and environmental parameters. Main results showed a very rapid increase in GAC temperature during MW irradiation up to ∼680 °C. This highlights the GAC strong ability to transform MW power into heat due to GAC excellent dielectric properties (ε' = 13.8). Physical characterization revealed that GAC pore volume and specific surface area change with the number of regeneration cycles. GAC regeneration efficiency variation reflects this behaviour with a maximum value of ∼112% (5th cycle). The final GAC weight loss of ∼7% further demonstrates GAC life span preservation during MW irradiation. Results from column tests confirms that GAC can be regenerated by MW also in dynamic condition, due to sublimation/vaporization and vapour stripping Cs removal mechanisms and that the regeneration effectiveness is time-dependent. The breakthrough curve shape confirms significant benefits from MW irradiation. Overall, obtained finding demonstrated the feasibility of the proposed concept, also providing essential data to guide its scaling-up application.


Assuntos
Césio/análise , Carvão Vegetal/química , Micro-Ondas , Modelos Teóricos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Água Subterrânea/química
8.
Sci Total Environ ; 619-620: 72-82, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145056

RESUMO

The potential ability of microwave heating (MWH) for the remediation of marine sediments affected by severe hydrocarbon (HC) contamination was investigated. Decontamination effectiveness and environmental sustainability through a comparative Life Cycle Assessment (LCA) were addressed. Main results revealed that the application of a 650-W MWH treatment resulted in a rapid (15min) HC removal. A citric acid (CA) dose of 0.1M led to enhanced-HC removals of 76.9, 96.5 and 99.7% after 5, 10 and 15min of MW irradiation, respectively. The increase in CA dose to 0.2M resulted in a shorter successful remediation time of 10min. The exponential kinetic model adopted showed a good correlation with the experimental data with R2 values in the 0.913-0.987 range. The nature of the MW treatment was shown to differently influence the HC fraction concentration after the irradiation process. Achieved HC removals in such a short remediation time are hardly possible by other clean-up techniques, making the studied treatment a potential excellent choice. Removal mechanisms, which allowed the enhanced-MWH to operate as a highly effective multi-step technique (pure thermal desorption+chemical washing), undoubtedly represent a key factor in the whole remediation process. The LCA highlighted that the MW technology is the most environmentally sustainable alternative for sediment decontamination applications, with a total damage, which was 75.74% lower than that associated with the EK (0.0503pt).

9.
Chemosphere ; 168: 1257-1266, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27810238

RESUMO

In this work, γ-ray shielding and Cs immobilisation performances of high-density magnetite (MG) and iron powder (IP) in Portland cement (PC) based-S/S treatment were investigated. Experimental results were elaborated using a γ-radiation shielding (γRS) index-based approach for assessing the effectiveness of in situ S/S of 137Cs-contaminated soils. Main results reveal that the replacement of PC by MG or IP (up to 50%) leads to a marked increase (up to about 4-fold) in the γ-ray shielding performance, whereas a further material addition decreases the S/S shielding performance. The highest γRS index of ∼26% (662 keV) was found in the case of IP addition (33.3%). The use of MG-mixes allows reaching slightly slower γRS index jointly with the highest Cs-immobilisation of 97.8%. In this case, calculation shows a maximum 137Cs-contamination level successfully treatable by in situ S/S up to ∼2.9 or ∼14.5 kBq kg-1 for the realistic or low probability scenario, respectively, highlighting the possibility to remediate a very wide range of real contamination. Findings show MG - PC S/S as the best choice and could provide a basis for decision-making of S/S remediation of 137Cs-contaminated sites.


Assuntos
Radioisótopos de Césio/química , Recuperação e Remediação Ambiental/métodos , Poluentes Radioativos do Solo/química , Óxido Ferroso-Férrico/química , Raios gama , Ferro/química
10.
J Environ Radioact ; 143: 20-28, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710096

RESUMO

This work focuses on the stabilisation/solidification (S/S) of radionuclide-polluted soils at different (232)Th levels using Portland cement alone and with barite aggregates. The potential of S/S was assessed applying a full testing protocol and calculating γ-radiation shielding (γRS) index, that included the measurement of soil radioactivity before and after the S/S as a function of the emission energy and soil contamination level. The results indicate that setting processes are strongly dependent on the contaminant concentration, and for contamination level higher than 5%, setting time values longer than 72 h. The addition of barite aggregates to the cement gout leads to a slight improvement of the S/S performance in terms of durability and contaminant leaching but reduces the mechanical resistance of the treated soils samples. Barite addition also causes an increase in the γ-rays shielding properties of the S/S treatment up to about 20%. Gamma-ray measurements show that γRS strongly depends on the energy, and that the radioactivity with the contamination level was governed by a linear trend, while, γRS index does not depend on the radionuclide concentration. Results allow the calculated γRS values and those available from other experiments to be applied to hazard radioactive soil contaminations.


Assuntos
Sulfato de Bário/análise , Materiais de Construção/análise , Resíduos Radioativos/análise , Poluentes Radioativos do Solo/análise , Gerenciamento de Resíduos/métodos , Raios gama , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA