Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Dis Poverty ; 13(1): 18, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374211

RESUMO

BACKGROUND: Brucellosis is a severe zoonotic disease that is often overlooked, particularly in impoverished countries. Timely identification of focal complications in brucellosis is crucial for improving treatment outcomes. However, there is currently a lack of established indicators or biomarkers for diagnosing these complications. Therefore, this study aimed to investigate potential warning signs of focal complications in human brucellosis, with the goal of providing practical parameters for clinicians to aid in the diagnosis and management of patients. METHODS: A multi-center cross-sectional study was conducted in China from December 2019 to August 2021. The study aimed to investigate the clinical characteristics and complications of patients with brucellosis using a questionnaire survey and medical record system. The presence of warning signs for complications was assessed using univariate and multivariate logistic regression models. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used for variable screening and model evaluation. RESULTS: A total of 880 participants diagnosed with human brucellosis were enrolled. The median age of the patients was 50 years [interquartile range (IQR): 41.5-58.0], and 54.8% had complications. The most common organ system affected by complications was the osteoarticular system (43.1%), with peripheral arthritis (30.0%), spondylitis (16.6%), paravertebral abscess (5.0%), and sacroiliitis (2.7%) being the most prevalent. Complications in other organ systems included the genitourinary system (4.7%), respiratory system (4.7%), and hematologic system (4.6%). Several factors were found to be associated with focal brucellosis. These factors included a long delay in diagnosis [odds ratio (OR) = 3.963, 95% confidence interval (CI) 1.906-8.238 for > 90 days], the presence of underlying disease (OR = 1.675, 95% CI 1.176-2.384), arthralgia (OR = 3.197, 95% CI 1.986-5.148), eye bulging pain (OR = 3.482, 95% CI 1.349-8.988), C-reactive protein (CRP) > 10 mg/L (OR = 1.910, 95% CI 1.310-2.784) and erythrocyte sedimentation rate (ESR) elevation (OR = 1.663, 95% CI 1.145-2.415). The optimal cutoff value in ROC analysis was > 5.4 mg/L for CRP (sensitivity 73.4% and specificity 51.9%) and > 25 mm/h for ESR (sensitivity 47.9% and specificity 71.1%). CONCLUSIONS: More than 50% of patients with brucellosis experienced complications. Factors such as diagnostic delay, underlying disease, arthralgia, eye pain, and elevated levels of CRP and ESR were identified as significant markers for the development of complications. Therefore, patients presenting with these conditions should be closely monitored for potential complications, regardless of their culture results and standard tube agglutination test titers.


Assuntos
Brucelose , Diagnóstico Tardio , Humanos , Pessoa de Meia-Idade , Artralgia/complicações , Brucelose/complicações , Brucelose/diagnóstico , Brucelose/epidemiologia , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Estudos Transversais , Incidência , Estudos Retrospectivos , Adulto
2.
PLoS Negl Trop Dis ; 17(6): e0011462, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384796

RESUMO

Bartonella are generally recognized as zoonotic pathogens of mammals, including many rodent species. However, data on the genetic diversity of Bartonella in some regions are still absent in China. In this study, we collected rodent samples (Meriones unguiculatus, Spermophilus dauricus, Eolagurus luteus, and Cricetulus barabensis) from Inner Mongolia located in Northern China. The Bartonella were detected and identified by sequencing the gltA, ftsZ, ITS, and groEL genes in them. An overall 47.27% (52/110) positive rate was observed. This may be the first report that M. unguiculatus and E. luteus harbor Bartonella. Phylogenetic and genetic analysis on gltA, ftsZ, ITS, and groEL genes indicated that the strains were divided into seven distinct clades, suggesting the diverse genetic genotypes of Bartonella species in this area. Of those, Clade 5 meets the criteria for identification as a novel species based on gene sequence dissimilarity to known Bartonella species and herein we name it "Candidatus Bartonella mongolica".


Assuntos
Infecções por Bartonella , Bartonella , Animais , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Sciuridae , Filogenia , Genótipo , China/epidemiologia , Gerbillinae
3.
China CDC Wkly ; 4(12): 259-263, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35433082

RESUMO

Introduction: Accurate etiological detection is needed to evaluate the risk of zoonotic diseases. Metagenomic next-generation sequencing (mNGS) can be used to monitor pathogens in animal species and identify potential zoonotic threats. The current sampling model for zoonotic pathogen monitoring in wild animals requires samples to be transferred from the field to a laboratory for further detection. Methods: We constructed a zoonotic pathogen survey model using a set of mobile laboratories. Results: The monitoring in this study was preplanned to detect Yersinia pestis, but the mNGS unexpectedly identified Bartonella spp. in the rodent samples, thus exposing the threat of bartonellosis to humans in this region. The co-localization of sampling and sequencing (CLOSS) model we tested required no long-distance transferring of samples and expands the regional coverage of zoonotic surveys by using a mobile laboratory. Discussion: Using this mNGS technique will enable detection of more zoonotic pathogens beyond the preplanned monitoring targets. This may increase the surveillance efficiency compared with that of the previous workflow and expand the application of the mobile laboratories for infectious diseases identification and surveillance in the field.

4.
Infect Drug Resist ; 15: 6501-6513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386408

RESUMO

Objective: To investigate the distribution, epidemiology, and clinical symptoms of brucellosis and Q fever in northeastern Inner Mongolia. Methods: In this study, 64 townships of Bairin left flag and Alukerqin flag, Jarud flag and Horqin right front flag in four counties with frequent brucellosis and Q fever were selected. Epidemiological characteristics, clinical features, and exposure to risk factors were identified and descriptively analyzed in patients from these areas. Results: There were 367 brucellosis cases in the four regions and 78 positive cases of Q-fever infection. In addition, 24 cases of brucellosis and Q-fever co-infection were identified, with a co-infection rate of 1.13%. Brucellosis and Q fever were mainly concentrated in the 30-65 and 40-55 age groups. For brucellosis, the difference between age groups was statistically significant (χ2 = 29.121, P < 0.05). The sex distribution for brucellosis was 225 men (61.31%) and 142 women (38.69%), and 45 men (57.69%) and 33 women (42.31%) had Q fever. Those with brucellosis and Q fever were mainly farmers, accounting for 79.19% and 78.38% of the total number, respectively. Of the 367 cases of brucellosis infection, the main symptoms were joint pain (52.59%), fatigue (47.14%), lower back pain (38.96%), fever (33.24%), hyperhidrosis (28.88%), and muscle pain (20.44%). Of the 78 cases of Q-fever infection, the main symptoms were joint pain (35.90%), fatigue (30.77%), lower back pain (26.92%), fever (21.79%), and hyperhidrosis (17.95%). Muscle pain also accounted for 12.82%. Conclusion: Occupational distribution suggests that we should strengthen the protection measures against diseases infected through animal husbandry. Among the clinical symptoms, fever, hyperhidrosis and fatigue were associated with brucellosis, while fever, headache, and fatigue were significantly associated with Q fever.

5.
BMC Microbiol ; 11: 256, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22108057

RESUMO

BACKGROUND: Since 1950, Brucella melitensis has been the predominant strain associated with human brucellosis in China. In this study we investigated the genotypic characteristics of B. melitensis isolates from China using a multiple-locus variable-number tandem-repeat analysis (MLVA) and evaluated the utility of MLVA with regards to epidemiological trace-back investigation. RESULTS: A total of 105 B. melitensis strains isolated from throughout China were divided into 69 MLVA types using MLVA-16. Nei's genetic diversity indices for the various loci ranged between 0.00 - 0.84. 12 out 16 loci were the low diversity with values < 0.2 and the most discriminatory markers were bruce16 and bruce30 with a diversity index of > 0.75 and containing 8 and 7 alleles, respectively. Many isolates were single-locus or double-locus variants of closely related B. melitensis isolates from different regions, including the north and south of China. Using panel 1, the majority of strains (84/105) were genotype 42 clustering to the 'East Mediterranean' B. melitensis group. Chinese B. melitensis are classified in limited number of closely related genotypes showing variation mainly at the panel 2B loci. CONCLUSION: The MLVA-16 assay can be useful to reveal the predominant genotypes and strain relatedness in endemic or non-endemic regions of brucellosis. However it is not suitable for biovar differentiation of B. melitensis. Genotype 42 is widely distributed throughout China during a long time. Bruce 16 and bruce 30 in panel 2B markers are most useful for typing Chinese isolates.


Assuntos
Técnicas de Tipagem Bacteriana , Brucella melitensis/genética , Genótipo , Repetições Minissatélites , Tipagem de Sequências Multilocus , Brucella melitensis/classificação , Brucella melitensis/isolamento & purificação , Brucelose/epidemiologia , Brucelose/microbiologia , China/epidemiologia , Análise por Conglomerados , DNA Bacteriano/genética , Humanos , Epidemiologia Molecular
6.
China CDC Wkly ; 3(6): 110-113, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34595015

RESUMO

What is already known about this topic? Wulanchabu City Center for Endemic Disease Prevention and Control had established and used a Brucellosis Integrated Information System (BIIS) since 2013. However, it had not been systematically evaluated and promoted so far. What is added by this report? The BIIS had significantly improved the efficiency of brucellosis reporting and provided convenience for follow-up management of cases, which was valuable for finishing completely routine therapy. However, the stability of the system needs to be improved. What are the implications for public health practice? The results of the BIIS assessment demonstrated its advantages and disadvantages, which could provide some evidence for its implementation in other areas of China.

7.
PLoS Negl Trop Dis ; 15(8): e0009558, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343197

RESUMO

On 12 November 2019, one couple from the Sonid Left Qi (County) in the Inner Mongolia Autonomous Region was diagnosed with pneumonic plague in Beijing. The wife acquired the infection from her husband. Thereafter, two bubonic plague cases were identified in Inner Mongolia on November 16th and 24th. In this study, genome-wide single nucleotide polymorphism (SNP) analysis was used to identify the phylogenetic relationship of Yersinia pestis strains isolated in Inner Mongolia. Strains isolated from reservoirs in 2018 and 2019 in Inner Mongolia, together with the strain isolated from Patient C, were further clustered into 2.MED3m, and two novel lineages (2.MED3q, 2.MED3r) in the 2.MED3 population. According to the analysis of PCR-based molecular subtyping methods, such as the MLVA 14 scheme and seven SNP allele sequencing, Patients A/B and D were classified as 2.MED3m. In addition, strains from rodents living near the patients' residences were clustered into the same lineage as patients. Such observations indicated that human plague cases originated from local reservoirs. Corresponding phylogenetic analysis also indicated that rodent plague strains in different areas in Inner Mongolia belong to different epizootics rather than being caused by spreading from the same epizootic in Meriones unguiculatus in 2019.


Assuntos
Peste/epidemiologia , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Adulto , Animais , Pequim/epidemiologia , China/epidemiologia , Evolução Fatal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Peste/etiologia , Roedores/microbiologia , Yersinia pestis/isolamento & purificação
8.
China CDC Wkly ; 3(52): 1109-1112, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35186366

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: There were a total of 4 and 3 human plague cases that occurred in the Inner Mongolia Autonomous Region in 2019 and 2020, respectively, with 1 and 2 deaths in 2019 and 2020 respectively, which indicated that plague still poses a significant threat to human health especially for farmers, shepherds, or residents living in native plague foci. WHAT IS ADDED BY THIS REPORT?: On August 14, 2021, 1 patient from the Otog Qi (County) in the Inner Mongolia sought treatment in Yinchuan City (the capital of Ningxia Hui Autonomous Region), where the patient was diagnosed with bubonic plague and secondary septicemic plague. The genetic source tracking of associated Yersinia pestis strains indicated that human plague cases were infected from animal reservoirs in Inner Mongolia. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Major threats of plague to residents living in native plague foci are the infection by bites of bacterium-bearing fleas or direct contact with diseased or dead plague-infected animals. And the ability of early diagnostic is very critical for county-level hospital in native plague foci.

9.
China CDC Wkly ; 1(1): 13-16, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34594592

RESUMO

What is already known about this topic? Plague is an acute infectious disease caused by Yersinia pestis (Y . pestis) and is primarily transmitted by rodents. Human can be infected by bites of bacterium-bearing fleas or direct contact with diseased or dead plague-infected animals. In 2004, the last human plague case was reported in Inner Mongolia Autonomous Region due to skinning a dead hare. What is added by this report? This is the first case of pneumonic plague imported into a major city since the founding of the People's Republic of China. Two primary pneumonic plague cases (Patients A and B) found in residents of Inner Mongolia were confirmed in Beijing on November 12, 2019. Another case (Patient C) of Y. pestis was identified as bubonic plague on November 14. Patient A most likely became infected from aerosol exposure to infective droplets while digging on his farm, located in an Meriones unguiculatus (M. unguiculatus) natural plague focus. Patient B became infected from contact with Patient A (her husband). Patient C became infected after skinning a dead hare. There was no epidemiological relationship between the Patient A/B and Patient C. What are the implications for public health practice? When epizootic plague is detected, local health-care providers and the public should be alerted about any possible risks. Public education efforts should focus on promoting personal protection measures.

11.
PLoS One ; 8(10): e76332, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124546

RESUMO

In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA). Among the B. melitensis isolates, the majority (74/82) belonged to MLVA8 genotype 42, clustering in the 'East Mediterranean' group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the 'Americas' group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal). The majority of B. abortus isolates (51/70) were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs.


Assuntos
Brucella abortus/genética , Brucella melitensis/genética , Brucella suis/genética , Brucelose/epidemiologia , Brucelose/veterinária , Doenças dos Bovinos/epidemiologia , Tipagem de Sequências Multilocus , Animais , Vacina contra Brucelose , Brucella abortus/classificação , Brucella abortus/isolamento & purificação , Brucella melitensis/classificação , Brucella melitensis/isolamento & purificação , Brucella suis/imunologia , Bovinos , China , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA