Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15186-15197, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38789930

RESUMO

Effective antitumor immunity hinges on the specific engagement between tumor and cytotoxic immune cells, especially cytotoxic T cells. Although investigating these intercellular interactions is crucial for characterizing immune responses and guiding immunotherapeutic applications, direct and quantitative detection of tumor-T cell interactions within a live-cell context remains challenging. We herein report a photocatalytic live-cell interaction labeling strategy (CAT-Cell) relying on the bioorthogonal decaging of quinone methide moieties for sensitive and selective investigation and quantification of tumor-T cell interactions. By developing quinone methide-derived probes optimized for capturing cell-cell interactions (CCIs), we demonstrated the capacity of CAT-Cell for detecting CCIs directed by various types of receptor-ligand pairs (e.g., CD40-CD40L, TCR-pMHC) and further quantified the strengths of tumor-T cell interactions that are crucial for evaluating the antitumor immune responses. We further applied CAT-Cell for ex vivo quantification of tumor-specific T cell interactions on splenocyte and solid tumor samples from mouse models. Finally, the broad compatibility and utility of CAT-Cell were demonstrated by integrating it with the antigen-specific targeting system as well as for tumor-natural killer cell interaction detection. By leveraging the bioorthogonal photocatalytic decaging chemistry on quinone methide, CAT-Cell provides a sensitive, tunable, universal, and noninvasive toolbox for unraveling and quantifying the crucial but delicate tumor-immune interactions under live-cell settings.


Assuntos
Indolquinonas , Indolquinonas/química , Animais , Camundongos , Humanos , Comunicação Celular , Linhagem Celular Tumoral , Neoplasias/imunologia
2.
Bioorg Chem ; 143: 107088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194902

RESUMO

Biomolecule labeling in living systems is crucial for understanding biological processes and discovering therapeutic targets. A variety of labeling warheads have been developed for multiple biological applications, including proteomics, bioimaging, sequencing, and drug development. Quinone methides (QMs), a class of highly reactive Michael receptors, have recently emerged as prominent warheads for on-demand biomolecule labeling. Their highly flexible functionality and tunability allow for diverse biological applications, but remain poorly explored at present. In this regard, we designed, synthesized, and evaluated a series of new QM probes with a trifluoromethyl group at the benzyl position and substituents on the aromatic ring to manipulate their chemical properties for biomolecule labeling. The engineered QM warhead efficiently labeled proteins both in vitro and under living cell conditions, with significantly enhanced activity compared to previous QM warheads. We further analyzed the labeling efficacy with the assistance of density functional theory (DFT) calculations, which revealed that the QM generation process, rather than the reactivity of QM, contributes more predominantly to the labeling efficacy. Noteworthy, twelve nucleophilic residues on the BSA were labeled by the probe, including Cys, Asp, Glu, His, Lys, Asn, Gln, Arg, Ser, Thr, Trp and Tyr. Given their high efficiency and tunability, these new QM warheads may hold great promise for a broad range of applications, especially spatiotemporal proteomic profiling for in-depth biological studies.


Assuntos
Indolquinonas , Proteômica , Sequência de Aminoácidos , Proteínas
3.
Phytochem Anal ; 35(2): 409-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872850

RESUMO

INTRODUCTION: Panax ginseng and Panax quinquefolium are traditional Chinese herb medicines and similar in morphology and some chemical components but differ in drug properties, so they cannot be mixed. However, the processed products of them are often sold in the form of slices, powder, and capsules, which are difficult to identify by traditional morphological methods. Furthermore, an accurate evaluation of P. ginseng, P. quinquefolium and the processed products have not been conducted. OBJECTIVE: This study aimed to establish a catalysed hairpin assembly (CHA) identification method for authenticating products made from P. ginseng and P. quinquefolium based on single nucleotide polymorphism (SNP) differences. METHOD: By analysing the differences of SNP in internal transcribed spacer 2 (ITS2) in P. ginseng and P. quinquefolium to design CHA-specific hairpins. Establish a sensitive and efficient CHA method that can identify P. ginseng and P. quinquefolium, use the sequencing technology to verify the accuracy of this method in identifying Panax products, and compare this method with high-resolution melting (HRM). RESULTS: The reaction conditions of CHA were as follows: the ratio of forward and reverse primers, 20:1; hairpin concentration, 5 ng/µL. Compared with capillary electrophoresis, this method had good specificity and the limit of detection was 0.5 ng/µL. The result of Panax product identification with CHA method were coincidence with that of the sequencing method; the positive rate of CHA reaction was 100%. CONCLUSION: This research presents an effective identification method for authenticating P. ginseng and P. quinquefolium products, which is helpful to improve the quality of Panax products.


Assuntos
Panax , Panax/genética , Panax/química , Medicina Tradicional Chinesa , Polimorfismo de Nucleotídeo Único , Tecnologia
4.
J Am Chem Soc ; 145(35): 19218-19224, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37632461

RESUMO

Site-specific protein decaging by light has become an effective approach for in situ manipulation of protein activities in a gain-of-function fashion. Although successful decaging of amino acid side chains of Lys, Tyr, Cys, and Glu has been demonstrated, this strategy has not been extended to aspartic acid (Asp), an essential amino acid residue with a range of protein functions and protein-protein interactions. We herein reported a genetically encoded photocaged Asp and applied it to the photocontrolled manipulation of a panel of proteins including firefly luciferase, kinases (e.g., BRAF), and GTPase (e.g., KRAS) as well as mimicking the in situ phosphorylation event on kinases. As a new member of the increasingly expanded amino acid-decaging toolbox, photocaged Asp may find broad applications for gain-of-function study of diverse proteins as well as biological processes in living cells.


Assuntos
Fotoquímica , Ácido Aspártico/química , Ácido Aspártico/genética , Fotoquímica/métodos , Fosforilação , Proteínas/química , Proteínas/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Motivos de Aminoácidos
5.
Chemistry ; 29(45): e202301458, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37222652

RESUMO

We present a novel and effective photocatalytic method for the methylation of ß-diketones with controllable degrees of deuterium incorporation via development of new methyl sources. By utilizing a methylamine-water system as the methyl precursor and a cascade assembly strategy for deuteration degree control, we synthesized methylated compounds with varying degrees of deuterium incorporation, showcasing the versatility of this approach. We examined a range of ß-diketone substrates and synthesized key intermediates for drug and bioactive compounds with varying degrees of deuterium incorporation, ranging from 0 to 3. We also investigated and discussed the postulated reaction pathway. This work demonstrates the utility of readily available reagents, methylamines and water, as a new methyl source, and provides a simple and efficient strategy for the synthesis of degree-controllable deuterium-labelled compounds.

6.
Angew Chem Int Ed Engl ; 62(48): e202310920, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37842955

RESUMO

Spatiotemporal manipulation of biological processes in living animals using noninvasive, remote-controlled stimuli is a captivating but challenging endeavor. Herein, we present the development of a biocompatible photocatalytic technology termed CAT-NIR, which uses external near infrared light (NIR, 740 nm) to trigger decaging reactions in living mice. The Os(II) terpyridine complex was identified as an efficient NIR photocatalyst for promoting deboronative hydroxylation reactions via superoxide generation in the presence of NIR light, resulting in the deprotection of phenol groups and the release of bioactive molecules under living conditions. The validation of the CAT-NIR system was demonstrated through the NIR-triggered rescue of fluorophores, prodrugs as well as biomolecules ranging from amino acids, peptides to proteins. Furthermore, by combining genetic code expansion and computer-aided screening, CAT-NIR could regulate affibody binding to the cell surface receptor HER2, providing a selective cell tagging technology through external NIR light. In particular, the tissue-penetrating ability of NIR light allowed for facile prodrug activation in living mice, enabling noninvasive, remote-controlled rescue of drug molecules. Given its broad adaptability, this CAT-NIR system may open new opportunities for manipulating the functions of bioactive molecules in living animals using external NIR light with spatiotemporal resolution.


Assuntos
Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/química , Raios Infravermelhos , Proteínas
7.
J Am Chem Soc ; 144(12): 5411-5417, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290047

RESUMO

Pyroptosis is an inflammatory cell death form triggered by protease-mediated truncation and release of the N-terminal pore-forming domain of the gasdermin (GSDM) family proteins in various cell types. We report a Bioorthogonally ACtivatable Base editor (BaseBAC) for in situ and on-demand initiation of cell-type-specific pyroptosis. We first made the enzymatic activity of a cytosine base editor (CBE) switchable by establishing a bioorthogonal blockage on the PAM-interacting residue to control its DNA-binding ability. The resulting BaseBAC allowed in situ control of base editing on the GSDME gene that switched to the truncated expression of its N-terminal domain to activate pyroptosis. BaseBAC offers a general method for on-demand awakening of functional domains of self-inhibiting proteins and the corresponding cellular processes with high specificity in living systems.


Assuntos
Piroptose , Morte Celular , Piroptose/genética
8.
Mol Biol Rep ; 49(3): 1731-1739, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35001247

RESUMO

BACKGROUND: The expression of microRNAs (miRNAs) in the serum of B-cell acute lymphoblastic leukemia (B-ALL) patients is abnormal. Nevertheless, the underlying mechanism remains unclear. Recent studies indicate that the methylation state of circulating cell-free DNA (cfDNA) is different between cancer patients and healthy individuals. Therefore, we speculate that abnormal expression of miRNA may be associated with cfDNA methylation. METHODS: A green fluorescent protein (GFP) labeled B-ALL transplantation animal model was established to explore the relationship between the miRNA expression and cfDNA methylation of the related gene. Quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of miRNAs. Further, cfDNA methylation levels of the related genes were evaluated through bisulfite sequencing polymerase chain reaction (BSP). RESULTS: The expression levels of miR-196b, miR-203, miR-34a-5p, miR-335-3p, miR-34b-5p, miR-615, miR-375-3p and miR-193b-5p in the serum of the model mice were significantly lower than those of the control group (P < 0.05). The methylation level of miR-196b promoter in cfDNA of the model group was significantly lower than that of the control group (P < 0.05), whereas no significant difference was noted in miR-203 promoter. The methylation levels of miR-196b and miR-203 coding region in cfDNA of the model group were significantly higher than those of the control group (P < 0.05). CONCLUSIONS: These results showed that CpG island hypermethylation in the miRNA coding region of cfDNA is related to the low expression of miR-196b and miR-203.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões Promotoras Genéticas/genética
9.
Angew Chem Int Ed Engl ; 61(27): e202202008, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451177

RESUMO

The dynamic interactions between RNAs and proteins play crucial roles in regulating diverse cellular processes. Proteome-wide characterization of these interactions in their native cellular context remains desirable but challenging. Herein, we developed a photocatalytic crosslinking (PhotoCAX) strategy coupled with mass spectrometry (PhotoCAX-MS) and RNA sequencing (PhotoCAX-seq) for the study of the composition and dynamics of protein-RNA interactions. By integrating the blue light-triggered photocatalyst with a dual-functional RNA-protein crosslinker (RP-linker) and the phase separation-based enrichment strategy, PhotoCAX-MS revealed a total of 2044 RBPs in human HEK293 cells. We further employed PhotoCAX to investigate the dynamic change of RBPome in macrophage cells upon LPS-stimulation, as well as the identification of RBPs interacting directly with the 5' untranslated regions of SARS-CoV-2 RNA.


Assuntos
COVID-19 , Proteínas de Ligação a RNA , Sobrevivência Celular , Células HEK293 , Humanos , RNA Viral , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2
10.
J Am Chem Soc ; 143(44): 18714-18720, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709827

RESUMO

Spatiotemporally resolved dissection of subcellular proteome is crucial to our understanding of cellular functions in health and disease. We herein report a bioorthogonal and photocatalytic decaging-enabled proximity labeling strategy (CAT-Prox) for spatiotemporally resolved mitochondrial proteome profiling in living cells. Our systematic survey of the photocatalysts has led to the identification of Ir(ppy)2bpy as a bioorthogonal and mitochondria-targeting catalyst that allowed photocontrolled, rapid rescue of azidobenzyl-caged quinone methide as a highly reactive Michael acceptor for proximity-based protein labeling in mitochondria of live cells. Upon careful validation through in vitro labeling, mitochondria-targeting specificity, in situ catalytic activity as well as protein tagging, we applied CAT-Prox for mitochondria proteome profiling in living Hela cells as well as hard-to-transfect macrophage RAW264.7 cells with approximately 70% mitochondria specificity observed from up to 300 proteins enriched. Finally, CAT-Prox was further applied to the dynamic dissection of mitochondria proteome of macrophage cells upon lipopolysaccharide stimulation. By integrating photocatalytic decaging chemistry with proximity-based protein labeling, CAT-Prox offers a general, catalytic, and nongenetic alternative to the enzyme-based proximity labeling strategies for diverse live cell settings.


Assuntos
Mitocôndrias/metabolismo , Processos Fotoquímicos , Catálise , Células HeLa , Humanos , Proteômica
11.
J Am Chem Soc ; 141(43): 17133-17141, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31580665

RESUMO

Temporal and reversible control over protein and cell conjugations holds great potential for traceless release of antibody-drug conjugates (ADCs) on tumor sites as well as on-demand altering or removal of targeting elements on cell surface. We herein developed a bioorthogonal and traceless releasable reaction on proteins and intact cells to fulfill such purposes. A systematic survey of transition metals in catalyzing the bioorthogonal cleavage reactions revealed that copper complexes such as Cu(I)-BTTAA and dual-substituted propargyl (dsPra) or propargyloxycarbonyl (dsProc) moieties offered a bioorthogonal releasable pair for reversible blockage and rescue of primary amines and phenol alcohols on small molecule drugs, protein side chains, as well as intact cell surface. For proof-of-concept, we employed such Cu(I)-BTTAA/dsProc and Cu(I)-BTTAA/dsPra pairs as a "traceless linker" strategy to construct cleavable ADCs to unleash cytotoxic compounds on cancer cells in situ and as a "reversible modification" strategy for cell surface engineering. Furthermore, by coupling with the genetic code expansion strategy, we site-specifically modulated ligand-receptor interactions on live cell membranes. Together, our work expanded the transition-metal-mediated bioorthogonal cleavage tool kit from terminal decaging to internal-linker breakage, which offered a temporal and reversible conjugation strategy on therapeutic proteins and cells.


Assuntos
Membrana Celular/química , Cobre/química , Imunoconjugados/química , Compostos Organometálicos/química , Pró-Fármacos/química , Mapas de Interação de Proteínas/genética , Aminas/química , Cumarínicos/química , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Etoposídeo/química , Etoposídeo/farmacocinética , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Imunoconjugados/metabolismo , Ligantes , Lisina-tRNA Ligase/genética , Mutagênese , Fenóis/química , Pró-Fármacos/farmacocinética , Estudo de Prova de Conceito , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
12.
Biochemistry ; 57(4): 446-450, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29171270

RESUMO

We report the genetically encoded chemical decaging strategy for protein activation in living bacterial cells. In contrast to the metabolically labile photocaging groups inside Escherichia coli, our chemical decaging strategy that relies on the inverse electron-demand Diels-Alder (iDA) reaction is compatible with the intracellular environment of bacteria, which can be a general tool for gain-of-function study of a given protein in prokaryotic systems. By applying this strategy for in situ activation of the indole-producing enzyme TnaA, we built an orthogonal and chemically inducible indole production pathway inside E. coli cells, which revealed the role of indole in bacterial antibiotic tolerance.


Assuntos
Proteínas de Escherichia coli/química , Triptofanase/química , Ciclo-Octanos , Ativação Enzimática/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Indóis/metabolismo , Mutagênese Sítio-Dirigida , Nitrobenzenos , Fotoquímica , Triptofanase/genética , Triptofanase/efeitos da radiação , Raios Ultravioleta
13.
Acc Chem Res ; 50(9): 2389-2400, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28809470

RESUMO

The science and art of preventing and managing disease and prolonging life is dependent on advances in medicine, biology, and biochemistry. Many of these advances will involve interactions of small molecules with biological entities. As such, they will rely on the efficient synthesis of active compounds with very high stereochemical purity. Although enantioselective reactions are important in this regard, most stereocenters in complex molecule synthesis are installed in diastereoselective reactions. Perhaps the most well-known diastereoselective C-C bond-forming reaction is the addition of nucleophiles to carbonyl groups with α- or ß-stereogenic centers. Diastereoselective additions of organometallic reagents to protected chiral α- and ß-hydroxy aldehydes and ketones are described by either Cram chelation or Felkin-Anh models, which are protecting group (PG)-dependent. Small PGs (X = OMOM, OBn, etc.) favor Cram chelation, wherein both the carbonyl group and the O-PG bind to the Lewis acidic metal, providing syn diol motifs. In contrast, silyl PGs, with the OSiR3 moiety being both bulky and weakly coordinating, provide anti diols (Felkin addition). It is well-known that exceptions to this paradigm are scarce. Therefore, the choice of PG is based on the desired stereochemical outcome in the addition step and is often inappropriate for the global protection strategy. Thus, it is critical to develop general methods for chelation-controlled additions of organometallics to chiral silyloxy aldehydes and ketones. Once the challenge of developing chelation-controlled additions to silyloxy carbonyl compounds can be met, the next question is what other pendant functional groups can chelate? Herein we introduce the first general methods for the chelation-controlled addition of organometallics to chiral silyloxy aldehydes and ketones. A wide variety of organozinc reagents have been used in these addition reactions, including dialkylzinc reagents that are commercially available or generated using Knochel's methods. Existing protocols for the generation of (E)-di- and -trisubstituted vinylzinc reagents have been employed, and new methods for the generation of (Z)-di- and -trisubstituted vinylzinc reagents have been developed. The generation of 1,1-heterobimetallic reagents based on boron and zinc has been advanced, and the addition of these reagents to silyloxy aldehydes via chelation-control is included. We will first describe the initial discovery and a model to explain the observed diastereoselectivities. A wide array of chelation-controlled additions to chiral α- and ß-silyloxy aldehydes and ketones will then be presented. We next describe other functional groups that undergo chelation-controlled additions. α-Halo aldehyde derivatives are well-known to favor Felkin addition (via the Cornforth-Evans model). We introduce a general method for chelation-controlled additions to α-halo aldimines that provides useful precursors to aziridines. Finally, we provide preliminary evidence that even C═C bonds can play the role of chelating groups in additions to ß,γ-unsaturated ketones. The results outlined in this Account redefine the commonly held idea that chiral silyloxy- and halo-substituted carbonyl compounds only give Felkin addition products. The key to achieving chelation control in these reactions is the use of weakly coordinating solvents (dichloromethane and toluene) that do not readily bind to the zinc Lewis acids RZnX.

14.
Chembiochem ; 18(16): 1593-1598, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28561913

RESUMO

Interference from endogenous signaling enzymes represents a major hurdle for building orthogonal signaling cascades inside cells, particularly among closely related isoforms within an enzyme family. Here, we employed a genetically encoded chemical decaging strategy to build orthogonally activated kinase isoforms, with the endogenous counterparts temporally disabled by an extracellularly delivered bacterial effector. This approach eliminated any potential interference from other kinase isoforms as well as endogenous kinases, which allowed the specific, gain-of-function report of mitogen-activated protein kinase kinase 1 (MEK1) activity as opposed to MEK2 with high temporal resolution. Our study dissected the distinct enzymatic activity, feedback regulation and signal outputs between these closely related kinase isoforms.


Assuntos
MAP Quinase Quinase 1/fisiologia , MAP Quinase Quinase 2/fisiologia , Reação de Cicloadição , Retroalimentação Fisiológica , Células HEK293 , Compostos Heterocíclicos com 1 Anel/química , Humanos , Interleucina-8/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/fisiologia , Lisina/análogos & derivados , Lisina/química , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/química , MAP Quinase Quinase 2/genética , Redes e Vias Metabólicas , Fosforilação , Engenharia de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
15.
Angew Chem Int Ed Engl ; 55(45): 14046-14050, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27735133

RESUMO

The inverse-electron-demand Diels-Alder (iDA) reaction has recently been repurposed as a bioorthogonal decaging reaction by accelerating the elimination process after an initial cycloaddition between trans-cyclooctene (TCO) and tetrazine (TZ). Herein, we systematically surveyed 3,6-substituted TZ derivatives by using a fluorogenic TCO-coumarin reporter followed by LC-MS analysis, which revealed that the initial iDA cycloaddition step was greatly accelerated by electron-withdrawing groups (EWGs) while the subsequent elimination step was strongly suppressed by EWGs. In addition, smaller substituents facilitated the decaging process. These findings promoted us to design and test unsymmetric TZs bearing an EWG group and a small non-EWG group at the 3- and 6-position, respectively. These TZs showed remarkably enhanced decaging rates, enabling rapid iDA-mediated protein activation in living cells.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Tetrazóis/análise , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Tetrazóis/metabolismo
16.
J Am Chem Soc ; 136(22): 8034-41, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24796452

RESUMO

Shibasaki's REMB catalysts (REMB; RE = Sc, Y, La-Lu; M = Li, Na, K; B = 1,1'-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most enantioselective asymmetric catalysts across a broad range of mechanistically diverse reactions. However, their widespread use has been hampered by the challenges associated with their synthesis and manipulation. We report here the self-assembly of novel hydrogen-bonded rare earth metal BINOLate complexes that serve as bench-stable precatalysts for Shibasaki's REMB catalysts. Incorporation of hydrogen-bonded guanidinium cations in the secondary coordination sphere leads to unique properties, most notably, improved stability toward moisture in solution and in the solid state. We have exploited these properties to develop straightforward, high-yielding, and scalable open-air syntheses that provide rapid access to crystalline, nonhygroscopic complexes from inexpensive hydrated RE starting materials. These compounds can be used as precatalysts for Shibasaki's REMB frameworks, where we have demonstrated that our system performs with comparable or improved levels of stereoselectivity in several mechanistically diverse reactions including Michael additions, aza-Michael additions, and direct Aldol reactions.

17.
Chemistry ; 20(41): 13089-93, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25168085

RESUMO

Polystyrene-supported (PS) diarylprolinol catalysts 1 a (Ar = phenyl) and 1 b (Ar = 3,5-bis(trifluoromethyl)phenyl) have been developed. Operating under site-isolation conditions, PS-1 a/1 b worked compatibly with PS-bound sulfonic acid catalyst 2 to promote deoligomerization of paraldehyde and subsequent cross-aldol reactions of the resulting acetaldehyde in one pot, affording aldol products in high yields with excellent enantioselectivities. The effect of water on the performance of the catalytic system has been studied and its optimal amount (0.5 equiv) has been determined. The dual catalytic system (1/2) allows repeated recycling and reuse (10 cycles). The potential of this methodology is demonstrated by a two-step synthesis of a phenoperidine analogue (68% overall yield; 98% ee) and by the preparation of highly enantioenriched 1,3-diols 4 and 3-methylamino-1-arylpropanols 5, key intermediates in the synthesis of a variety of druglike structures.

18.
Chemistry ; 20(23): 7122-7, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24737394

RESUMO

By using a novel, simple, and convenient synthetic route, enantiopure 6-ethynyl-BINOL (BINOL = 1,1-binaphthol) was synthesized and anchored to an azidomethylpolystyrene resin through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The polystyrene (PS)-supported BINOL ligand was converted into its diisopropoxytitanium derivative in situ and used as a heterogeneous catalyst in the asymmetric allylation of ketones. The catalyst showed good activity and excellent enantioselectivity, typically matching the results obtained in the corresponding homogeneous reaction. The allylation reaction mixture could be submitted to epoxidation by simple treatment with tert-butyl hydroperoxide (TBHP), and the tandem asymmetric allylation epoxidation process led to a highly enantioenriched epoxy alcohol with two adjacent quaternary centers as a single diastereomer. A tandem asymmetric allylation/Pauson-Khand reaction was also performed, involving simple treatment of the allylation reaction mixture with Co2(CO)8/N-methyl morpholine N-oxide. This cascade process resulted in the formation of two diastereomeric tricyclic enones in high yields and enantioselectivities.

19.
Natl Sci Rev ; 11(7): nwae183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055168

RESUMO

Ultrasensitive protein identification is of paramount importance in basic research and clinical diagnostics but remains extremely challenging. A key bottleneck in preventing single-molecule protein sequencing is that, unlike the revolutionary nucleic acid sequencing methods that rely on the polymerase chain reaction (PCR) to amplify DNA and RNA molecules, protein molecules cannot be directly amplified. Decoding the proteins via amplification of certain fingerprints rather than the intact protein sequence thus represents an appealing alternative choice to address this formidable challenge. Herein, we report a proof-of-concept method that relies on residue-resolved DNA barcoding and composition code counting for amplifiable protein fingerprinting (AmproCode). In AmproCode, selective types of residues on peptides or proteins are chemically labeled with a DNA barcode, which can be amplified and quantified via quantitative PCR. The operation generates a relative ratio as the residue-resolved 'composition code' for each target protein that can be utilized as the fingerprint to determine its identity from the proteome database. We developed a database searching algorithm and applied it to assess the coverage of the whole proteome and secretome via computational simulations, proving the theoretical feasibility of AmproCode. We then designed the residue-specific DNA barcoding and amplification workflow, and identified different synthetic model peptides found in the secretome at as low as the fmol/L level for demonstration. These results build the foundation for an unprecedented amplifiable protein fingerprinting method. We believe that, in the future, AmproCode could ultimately realize single-molecule amplifiable identification of trace complex samples without further purification, and it may open a new avenue in the development of next-generation protein sequencing techniques.

20.
Nat Chem ; 16(4): 533-542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418535

RESUMO

Tryptophan (Trp) plays a critical role in the regulation of protein structure, interactions and functions through its π system and indole N-H group. A generalizable method for blocking and rescuing Trp interactions would enable the gain-of-function manipulation of various Trp-containing proteins in vivo, but generating such a platform remains challenging. Here we develop a genetically encoded N1-vinyl-caged Trp capable of rapid and bioorthogonal decaging through an optimized inverse electron-demand Diels-Alder reaction, allowing site-specific activation of Trp on a protein of interest in living cells. This chemical activation of a genetically encoded caged-tryptophan (Trp-CAGE) strategy enables precise activation of the Trp of interest underlying diverse important molecular interactions. We demonstrate the utility of Trp-CAGE across various protein families, such as catalase-peroxidases and kinases, as translation initiators and posttranslational modification readers, allowing the modulation of epigenetic signalling in a temporally controlled manner. Coupled with computer-aided prediction, our strategy paves the way for bioorthogonal Trp activation on more than 28,000 candidate proteins within their native cellular settings.


Assuntos
Proteínas , Triptofano , Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA