Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(26): e2310829, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258407

RESUMO

The pursuit of highly-active and stable catalysts in anodic oxygen evolution reaction (OER) is desirable for high-current-density water electrolysis toward industrial hydrogen production. Herein, a straightforward yet feasible method to prepare WFeRu ternary alloying catalyst on nickel foam is demonstrated, whereby the foreign W, Fe, and Ru metal atoms diffuse into the Ni foam resulting in the formation of inner immobilized ternary alloy. Thanks to the synergistic impact of foreign metal atoms and structural robustness of inner immobilized alloying catalyst, the well-designed WFeRu@NF self-standing anode exhibits superior OER activities. It only requires overpotentials of 245 and 346 mV to attain current densities of 20 and 500 mA cm-2, respectively. Moreover, the as-prepared ternary alloying catalyst also exhibits a long-term stability at a high-current-density of 500 mA cm-2 for over 45 h, evidencing the inner-immobilization strategy is promising for the development of highly active and stable metal-based catalysts for high-density-current water oxidation process.

2.
Front Oncol ; 13: 1323812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239652

RESUMO

Background: Numerous observational studies have investigated the risk of prostate cancer (PCa) in patients diagnosed with Parkinson's Disease (PD). However, the existence of a definitive association remains uncertain. Methods: Systematic searches were performed on PubMed, Web of Science, Scopus, and Google Scholar for studies published up to October 1, 2023. For Mendelian randomized (MR) causal inference, we employed pooled data from the IPDGC and PRACTICAL Consortium. The inverse variance weighted (IVW) method served as the principal technique for estimating odds ratios (ORs) and 95% confidence intervals (CIs) for the associations under investigation. Results: Cumulative analysis of nine studies revealed no significant association between patients diagnosed with PD and the subsequent incidence of PCa ([relative ratio] RR = 0.89, 95%CI = 0.73 to 1.08, P = 0.237). However, subgroup analyses indicated a reduced occurrence of PCa in Caucasian patients with PD (RR = 0.81, 95%CI = 0.69 to 0.95, P = 0.011). MR analyses failed to establish a significant link between increased genetic susceptibility to PD and the risk of PCa (IVW OR = 1.025, 95%CI = 0.997 to 1.054, P = 0.082). Sensitivity analyses further corroborated the robustness of these results. Conclusion: Both observational meta-analysis and MR analysis based on genetic variation do not support an association between PD patients and the subsequent risk of PCa. Further research is warranted to unravel the potential underlying mechanisms linking these two diseases. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023473527.

3.
Nat Commun ; 14(1): 5363, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660156

RESUMO

The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of -35 mV at -10 mA/cm2 and a small Tafel slope (-34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of -10 and -50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA