Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Cardiol ; 43(6): 1223-1228, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35233653

RESUMO

MEK inhibitors (MEKi) have shown efficacy in pediatric low-grade glioma as well as plexiform neurofibroma. MEKi have been associated with acute cardiac dysfunction in adults. Cardiac consequences in children are unknown. We performed a single center retrospective cohort study evaluating cardiac function by echocardiography (echo) in children and young adults < 21 years receiving MEKi between October 2013 and May 2018. Blinded assessment of left ventricular function by fractional shortening (FS) and ejection fraction (EF) was performed on all available echocardiograms performed before, during, and following therapy, as well as after re-initiation of therapy. Twenty-six patients underwent MEKi therapy with echo follow-up during the study period. Twenty-four of these had complete echo data. Median follow-up was 12 months. Borderline EF (EF 53-57.9%) occurred in 12 (50%) patients; and 3 (12.5%) progressed to abnormal EF (EF < 53%). Cardiac dysfunction, when it occurred, was mild (lowest documented EF was 45%, and lowest FS was 24.4%). EF abnormalities typically fluctuated during therapy, resolved off therapy, and recurred with MEKi re-initiation. No clinical or demographic differences were detected between those who maintained normal cardiac function and those who developed borderline or overt cardiac dysfunction. Symptomatic heart failure did not occur. In this cohort of children and young adults, MEKi use was associated with a high (50%) incidence of borderline or mildly decreased left ventricular function. There was no evidence of permanent cardiac dysfunction. Further evaluation in larger prospective trials is needed.


Assuntos
Cardiopatias , Disfunção Ventricular Esquerda , Criança , Estudos de Coortes , Cardiopatias/complicações , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , Estudos Prospectivos , Estudos Retrospectivos , Volume Sistólico , Adulto Jovem
2.
J Neuroinflammation ; 14(1): 48, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28264694

RESUMO

BACKGROUND: The complement cascade not only provides protection from infection but can also mediate destructive inflammation. Complement is also involved in elimination of neuronal synapses which is essential for proper development, but can be detrimental during aging and disease. C1q, required for several of these complement-mediated activities, is present in the neuropil, microglia, and a subset of interneurons in the brain. METHODS: To identify the source(s) of C1q in the brain, the C1qa gene was selectively inactivated in the microglia or Thy-1+ neurons in both wild type mice and a mouse model of Alzheimer's disease (AD), and C1q synthesis assessed by immunohistochemistry, QPCR, and western blot analysis. RESULTS: While C1q expression in the brain was unaffected after inactivation of C1qa in Thy-1+ neurons, the brains of C1qa FL/FL :Cx3cr1 CreERT2 mice in which C1qa was ablated in microglia were devoid of C1q with the exception of limited C1q in subsets of interneurons. Surprisingly, this loss of C1q occurred even in the absence of tamoxifen by 1 month of age, demonstrating that Cre activity is tamoxifen-independent in microglia in Cx3cr1 CreERT2/WganJ mice. C1q expression in C1qa FL/FL : Cx3cr1 CreERT2/WganJ mice continued to decline and remained almost completely absent through aging and in AD model mice. No difference in C1q was detected in the liver or kidney from C1qa FL/FL : Cx3cr1 CreERT2/WganJ mice relative to controls, and C1qa FL/FL : Cx3cr1 CreERT2/WganJ mice had minimal, if any, reduction in plasma C1q. CONCLUSIONS: Thus, microglia, but not neurons or peripheral sources, are the dominant source of C1q in the brain. While demonstrating that the Cx3cr1 CreERT2/WganJ deleter cannot be used for adult-induced deletion of genes in microglia, the model described here enables further investigation of physiological roles of C1q in the brain and identification of therapeutic targets for the selective control of complement-mediated activities contributing to neurodegenerative disorders.


Assuntos
Encéfalo/citologia , Complemento C1q/deficiência , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Complemento C1q/genética , Regulação da Expressão Gênica/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurópilo/metabolismo , RNA Mensageiro/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Mol Neurodegener ; 12(1): 66, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923083

RESUMO

BACKGROUND: Pharmacologic inhibition of C5aR1, a receptor for the complement activation proinflammatory fragment, C5a, suppressed pathology and cognitive deficits in Alzheimer's disease (AD) mouse models. To validate that the effect of the antagonist was specifically via C5aR1 inhibition, mice lacking C5aR1 were generated and compared in behavior and pathology. In addition, since C5aR1 is primarily expressed on cells of the myeloid lineage, and only to a lesser extent on endothelial cells and neurons in brain, gene expression in microglia isolated from adult brain at multiple ages was compared across all genotypes. METHODS: C5aR1 knock out mice were crossed to the Arctic AD mouse model, and characterized for pathology and for behavior performance in a hippocampal dependent memory task. CX3CR1GFP and CCR2RFP reporter mice were bred to C5aR1 sufficient and knockout wild type and Arctic mice to enable sorting of microglia (GFP-positive, RFP-negative) isolated from adult brain at 2, 5, 7 and 10 months of age followed by RNA-seq analysis. RESULTS: A lack of C5aR1 prevented behavior deficits at 10 months, although amyloid plaque load was not altered. Immunohistochemical analysis showed no CCR2+ monocytes/macrophages near the plaques in the Arctic brain with or without C5aR1. Microglia were sorted from infiltrating monocytes (GFP and RFP-positive) for transcriptome analysis. RNA-seq analysis identified inflammation related genes as differentially expressed, with increased expression in the Arctic mice relative to wild type and decreased expression in the Arctic/C5aR1KO relative to Arctic. In addition, phagosomal-lysosomal gene expression was increased in the Arctic mice relative to wild type but further increased in the Arctic/C5aR1KO mice. A decrease in neuronal complexity was seen in hippocampus of 10 month old Arctic mice at the time that correlates with the behavior deficit, both of which were rescued in the Arctic/C5aR1KO. CONCLUSIONS: These data are consistent with microglial polarization in the absence of C5aR1 signaling reflecting decreased induction of inflammatory genes and enhancement of degradation/clearance pathways, which is accompanied by preservation of CA1 neuronal complexity and hippocampal dependent cognitive function. These results provide links between microglial responses and loss of cognitive performance and, combined with the previous pharmacological approach to inhibit C5aR1 signaling, support the potential of this receptor as a novel therapeutic target for AD in humans.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Doença de Alzheimer/patologia , Animais , Cognição , Hipocampo/patologia , Humanos , Inflamação/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Receptor da Anafilatoxina C5a/deficiência , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA