Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512964

RESUMO

Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Adolescente , Humanos , Adulto Jovem , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929643

RESUMO

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Tecido Adiposo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Neoplasias da Mama/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/metabolismo
3.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798307

RESUMO

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Dysregulated cell metabolism is now an accepted hallmark of cancer. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we found that long-term education of breast cancer cells (MCF7, T47D) with EVs from breast adipose tissue of women who are overweight or obese (O-EVs) leads to sustained increased proliferative potential. RNA-Seq of O-EV-educated cells demonstrates increased expression of genes, such as ATP synthase and NADH: ubiquinone oxidoreductase, involved in oxidative phosphorylation. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. Mitochondrial complex I inhibitor, metformin, reverses O-EV-induced cell proliferation. Several miRNAs, miR-155-5p, miR-10a-3p, and miR-30a-3p, which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing the metabolic reprogramming of ER+ breast cancer cells.

4.
Cancer Res Commun ; 2(7): 663-678, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36923282

RESUMO

Fibrolamellar carcinoma (FLC) is an aggressive liver cancer with no effective therapeutic options. The extracellular environment of FLC tumors is poorly characterized and may contribute to cancer growth and/or metastasis. To bridge this knowledge gap, we assessed pathways relevant to proteoglycans, a major component of the extracellular matrix. We first analyzed gene expression data from FLC and nonmalignant liver tissue (n = 27) to identify changes in glycosaminoglycan (GAG) biosynthesis pathways and found that genes associated with production of chondroitin sulfate, but not other GAGs, are significantly increased by 8-fold. We then implemented a novel LC/MS-MS based method to quantify the abundance of different types of GAGs in patient tumors (n = 16) and found that chondroitin sulfate is significantly more abundant in FLC tumors by 6-fold. Upon further analysis of GAG-associated proteins, we found that versican (VCAN) expression is significantly upregulated at the mRNA and protein levels, the latter of which was validated by IHC. Finally, we performed single-cell assay for transposase-accessible chromatin sequencing on FLC tumors (n = 3), which revealed for the first time the different cell types in FLC tumors and also showed that VCAN is likely produced not only from FLC tumor epithelial cells but also activated stellate cells. Our results reveal a pathologic aberrancy in chondroitin (but not heparan) sulfate proteoglycans in FLC and highlight a potential role for activated stellate cells. Significance: This study leverages a multi-disciplinary approach, including state-of-the-art chemical analyses and cutting-edge single-cell genomic technologies, to identify for the first time a marked chondroitin sulfate aberrancy in FLC that could open novel therapeutic avenues in the future.


Assuntos
Carcinoma Hepatocelular , Sulfatos de Condroitina , Humanos , Sulfatos de Condroitina/metabolismo , Carcinoma Hepatocelular/genética , Proteoglicanas de Heparan Sulfato , Versicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA